Skip to main content
Log in

Enhanced Wnt signaling by methylation-mediated loss of SFRP2 promotes osteosarcoma cell invasion

  • Original Article
  • Published:
Tumor Biology

Abstract

Wnt signaling is essential for the initiation and progression of osteosarcoma (OS) tumors and is suppressed by the secreted frizzled-related proteins (SFRPs). The methylation-induced protein degradation reduces the activity of SFRPs and subsequently increases the activity of Wnt signaling. However, whether the methylation of SFRP2, a member of SFRPs, may be involved in the pathogenesis of OS is not known. Here, we investigated the expression levels of SFRP2 in OS specimens. We found that SFRP2 mRNA was significantly decreased and methylation of SFRP2 gene was significantly increased in malignant OS tumors as compared to the paired adjacent non-tumor tissue. Moreover, SFRP2 expression was significantly decreased in the malignant OS cell lines, SAOS2, MG63, and U2OS, but not in the primary osteoblast cells. The demethylation of SFRP2 gene by 5′-aza-deoxycytidine (5-aza-dCyd) in OS cell lines restored SFRP2 expression, at both mRNA and protein levels, and suppressed cell invasion. Furthermore, the demethylation of SFRP2 gene appeared to inhibit nuclear retention of a key Wnt signaling factor, β-catenin, in OS cell lines. Together, these data suggest that SFRP2 may function as an OS invasion suppressor by interfering with Wnt signaling, and the methylation of SFRP2 gene may promote pathogenesis of OS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nojima M, Suzuki H, Toyota M, Watanabe Y, Maruyama R, Sasaki S. Frequent epigenetic inactivation of sfrp genes and constitutive activation of Wnt signaling in gastric cancer. Oncogene. 2007;26:4699–713.

    Article  CAS  PubMed  Google Scholar 

  2. Suzuki H, Watkins DN, Jair KW, Schuebel KE, Markowitz SD, Chen WD, et al. Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat Genet. 2004;36:417–22.

    Article  CAS  PubMed  Google Scholar 

  3. Lin R, Feng J, Dong S, Pan R, Zhuang H, Ding Z. Regulation of autophagy of prostate cancer cells by beta-catenin signaling. Cell Physiol Biochem. 2015;35:926–32.

    Article  CAS  PubMed  Google Scholar 

  4. Xu X, Ma J, Li C, Zhao W, Xu Y. Regulation of chondrosarcoma invasion by MMP26. Tumour Biol. 2015;36:365–9.

    Article  CAS  PubMed  Google Scholar 

  5. Liu S, Chen M, Li P, Wu Y, Chang C, Qiu Y, et al. Ginsenoside rh2 inhibits cancer stem-like cells in skin squamous cell carcinoma. Cell Physiol Biochem. 2015;36:499–508.

    Article  CAS  PubMed  Google Scholar 

  6. Ge Z, Zhang B, Bu X, Wang Y, Xiang L, Tan J. Molecular mechanism of activating protein-4 regulated growth of hepatocellular carcinoma. Tumour Biol. 2014;35:12441–7.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang H, Liu C, Kong Y, Huang H, Wang C, Zhang H. Tgfbeta signaling in pancreatic ductal adenocarcinoma. Tumour Biol. 2015;36:1613–8.

    Article  CAS  PubMed  Google Scholar 

  8. Tsuchiya H, Tomita K, Mori Y, Asada N, Morinaga T, Kitano S, et al. Caffeine-assisted chemotherapy and minimized tumor excision for nonmetastatic osteosarcoma. Anticancer Res. 1998;18:657–66.

    CAS  PubMed  Google Scholar 

  9. Yang J, Zhang W. New molecular insights into osteosarcoma targeted therapy. Curr Opin Oncol. 2013;25:398–406.

    Article  CAS  PubMed  Google Scholar 

  10. Li G, Fu D, Liang W, Fan L, Chen K, Shan L, et al. Cyc1 silencing sensitizes osteosarcoma cells to trail-induced apoptosis. Cell Physiol Biochem. 2014;34:2070–80.

    Article  PubMed  Google Scholar 

  11. Liu Y, He J, Chen X, Li J, Shen M, Yu W, et al. The proapoptotic effect of formononetin in human osteosarcoma cells: involvement of inactivation of ERK and Akt pathways. Cell Physiol Biochem. 2014;34:637–45.

    Article  CAS  PubMed  Google Scholar 

  12. Wang Q, Cai J, Wang J, Xiong C, Zhao J. MiR-143 inhibits EGFR-signaling-dependent osteosarcoma invasion. Tumour Biol. 2014;35:12743–8.

    Article  CAS  PubMed  Google Scholar 

  13. Xiao Q, Zhang X, Wu Y, Yang Y. Inhibition of macrophage polarization prohibits growth of human osteosarcoma. Tumour Biol. 2014;35:7611–6.

    Article  CAS  PubMed  Google Scholar 

  14. Luo XJ, Tang DG, Gao TL, Zhang YL, Wang M, Quan ZX, et al. MicroRNA-212 inhibits osteosarcoma cells proliferation and invasion by down-regulation of Sox4. Cell Physiol Biochem. 2014;34:2180–8.

    Article  CAS  PubMed  Google Scholar 

  15. Li F, Li S, Cheng T. Tgf-beta1 promotes osteosarcoma cell migration and invasion through the miR-143-versican pathway. Cell Physiol Biochem. 2014;34:2169–79.

    Article  PubMed  Google Scholar 

  16. He Y, Meng C, Shao Z, Wang H, Yang S. MiR-23a functions as a tumor suppressor in osteosarcoma. Cell Physiol Biochem. 2014;34:1485–96.

    Article  CAS  PubMed  Google Scholar 

  17. Chen J, Fu H, Wang Z, Yin F, Li J, Hua Y, et al. A new synthetic ursolic acid derivative IUA with anti-tumor efficacy against osteosarcoma cells via inhibition of JNK signaling pathway. Cell Physiol Biochem. 2014;34:724–33.

    Article  CAS  PubMed  Google Scholar 

  18. Xu H, Liu X, Zhao J. Down-regulation of miR-3928 promoted osteosarcoma growth. Cell Physiol Biochem. 2014;33:1547–56.

    Article  CAS  PubMed  Google Scholar 

  19. Xu G, Wang J, Jia Y, Shen F, Han W, Kang Y. Mir-142-3p functions as a potential tumor suppressor in human osteosarcoma by targeting HMGA1. Cell Physiol Biochem. 2014;33:1329–39.

    Article  CAS  PubMed  Google Scholar 

  20. Pan W, Wang H, Jianwei R, Ye Z. MicroRNA-27a promotes proliferation, migration and invasion by targeting MAP2k4 in human osteosarcoma cells. Cell Physiol Biochem. 2014;33:402–12.

    Article  CAS  PubMed  Google Scholar 

  21. Chen X, Luther G, Zhang W, Nan G, Wagner ER, Liao Z, et al. The E-F hand calcium-binding protein S100A4 regulates the proliferation, survival and differentiation potential of human osteosarcoma cells. Cell Physiol Biochem. 2013;32:1083–96.

    Article  CAS  PubMed  Google Scholar 

  22. Chang YW, Zhao YF, Cao YL, Gu XF, Li ZQ, Wang SQ, et al. Liver x receptor alpha inhibits osteosarcoma cell proliferation through up-regulation of FoxO1. Cell Physiol Biochem. 2013;32:180–6.

    Article  CAS  PubMed  Google Scholar 

  23. Pinto D, Clevers H. Wnt, stem cells and cancer in the intestine. Biol Cell. 2005;97:185–96.

    Article  CAS  PubMed  Google Scholar 

  24. Holland JD, Klaus A, Garratt AN, Birchmeier W. Wnt signaling in stem and cancer stem cells. Curr Opin Cell Biol. 2013;25:254–64.

    Article  CAS  PubMed  Google Scholar 

  25. Ehrlund A, Mejhert N, Lorente-Cebrian S, Astrom G, Dahlman I, Laurencikiene J, et al. Characterization of the Wnt inhibitors secreted frizzled-related proteins (SFRPS) in human adipose tissue. J Clin Endocrinol Metab. 2013;98:E503–508.

    Article  CAS  PubMed  Google Scholar 

  26. Shin H, Kim JH, Lee YS, Lee YC. Change in gene expression profiles of secreted frizzled-related proteins (SFRPS) by sodium butyrate in gastric cancers: induction of promoter demethylation and histone modification causing inhibition of Wnt signaling. Int J Oncol. 2012;40:1533–42.

    CAS  PubMed  Google Scholar 

  27. Nathan E, Tzahor E. sFRPS: a declaration of (Wnt) independence. Nat Cell Biol. 2009;11:13.

    Article  CAS  PubMed  Google Scholar 

  28. Drescher U. A no-Wnt situation: SFRPS as axon guidance molecules. Nat Neurosci. 2005;8:1281–2.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang Y, Chen H. Genistein attenuates WNT signaling by up-regulating sFRP2 in a human colon cancer cell line. Exp Biol Med (Maywood). 2011;236:714–22.

    Article  CAS  Google Scholar 

  30. Chung MT, Lai HC, Sytwu HK, Yan MD, Shih YL, Chang CC, et al. SFRP1 and SFRP2 suppress the transformation and invasion abilities of cervical cancer cells through Wnt signal pathway. Gynecol Oncol. 2009;112:646–53.

    Article  CAS  PubMed  Google Scholar 

  31. Sui C, Ma J, Chen Q, Yang Y. The variation trends of SFRP2 methylation of tissue, feces, and blood detection in colorectal cancer development. Eur J Cancer Prev. 2015. doi: 10.1097/CEJ.0000000000000185

  32. Zhang X, Song YF, Lu HN, Wang DP, Zhang XS, Huang SL, et al. Combined detection of plasma GATA5 and SFRP2 methylation is a valid noninvasive biomarker for colorectal cancer and adenomas. World J Gastroenterol. 2015;21:2629–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sui C, Wang G, Chen Q, Ma J. Variation risks of SFRP2 hypermethylation between precancerous disease and colorectal cancer. Tumour Biol. 2014;35:10457–65.

    Article  CAS  PubMed  Google Scholar 

  34. Takeda M, Nagasaka T, Dong-Sheng S, Nishie H, Oka T, Yamada E, et al. Expansion of CpG methylation in the SFRP2 promoter region during colorectal tumorigenesis. Acta Med Okayama. 2011;65:169–77.

    CAS  PubMed  Google Scholar 

  35. Pehlivan S, Artac M, Sever T, Bozcuk H, Kilincarslan C, Pehlivan M. Gene methylation of SFRP2, P16, DAPK1, HIC1, and MGMT and KRAS mutations in sporadic colorectal cancer. Cancer Genet Cytogenet. 2010;201:128–32.

    Article  CAS  PubMed  Google Scholar 

  36. Wang DR, Tang D. Hypermethylated SFRP2 gene in fecal DNA is a high potential biomarker for colorectal cancer noninvasive screening. World J Gastroenterol. 2008;14:524–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Huang Z, Li L, Wang J. Hypermethylation of SFRP2 as a potential marker for stool-based detection of colorectal cancer and precancerous lesions. Dig Dis Sci. 2007;52:2287–91.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Grant of The Education Department of Liaoning Province (No: L2014336).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Xiao.

Ethics declarations

Conflicts of interest

The authors have declared that no competing interests exist.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Q., Yang, Y., Zhang, X. et al. Enhanced Wnt signaling by methylation-mediated loss of SFRP2 promotes osteosarcoma cell invasion. Tumor Biol. 37, 6315–6321 (2016). https://doi.org/10.1007/s13277-015-4466-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4466-z

Keywords

Navigation