Skip to main content
Log in

In search of underlying mechanisms and potential drugs of melphalan-induced vascular toxicity through retinal endothelial cells using bioinformatics approach

  • Original Article
  • Published:
Tumor Biology

Abstract

We aimed to explore molecular mechanism and drug candidates of vascular toxicities associated with melphalan after treating human retinal endothelial cells (RECs). GSE34381 microarray data was firstly downloaded and used to identify the differentially expressed genes (DEGs) in human REC treated with melphalan vs. untreated cells by limma package in R language. The transcription network was constructed based on TRANSFAC database and the top five transcription factors (TFs) were select with a measure of regulatory impact factor, followed by the construction of function modules. Gene ontology enrichment analyses were performed to explore the enriched functions. Connectivity Map analysis was conducted to predict the potential drugs overcoming the melphalan’s actions on REC. Totally, 75 DEGs were identified, including 70 up-regulated and five down-regulated genes. Transcription network with 1311 nodes and 1875 edges was constructed and the top five TFs were CREM, MYC, FLI1, NF-κB1, and JUN. Functional modules indicated that NF-κB1 and MYC were the important nodes. The upregulated genes as well as the genes involved in the modules mainly participated in biological process of immune response, cell proliferation, and cell motion. Five small molecules were predicted to be potential drug candidates, including doxorubicin, fipexide, daunorubicin, tiabendazole, and GW-8510. Based on these results, we speculate that NF-κB1 and MYC might involve in the molecular mechanism of vascular toxicity induced by melphalan through regulating their target genes. Five small molecules might be drug candidates to overcome the melphalan-induced vascular toxicity via targeting to MYC and JUN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Houston SK, Murray TG, Wolfe SQ, Fernandes CE. Current update on retinoblastoma. Int Ophthalmol Clin. 2011;51(1):77–91. doi:10.1097/IIO.0b013e3182010f29.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chintagumpala M, Chevez-Barrios P, Paysse EA, Plon SE, Hurwitz R. Retinoblastoma: review of current management. Oncologist. 2007;12(10):1237–46. doi:10.1634/theoncologist.12-10-1237.

    Article  PubMed  Google Scholar 

  3. Jehanne M, Brisse H, Gauthier-Villars M, Lumbroso-le Rouic L, Freneaux P, Aerts I. Retinoblastoma: recent advances. Bull Cancer. 2014;101(4):380–7.

    PubMed  Google Scholar 

  4. Kivelä T. The epidemiological challenge of the most frequent eye cancer: retinoblastoma, an issue of birth and death. Br J Ophthalmol. 2009;93(9):1129–31.

    Article  PubMed  Google Scholar 

  5. Chawla B, Jain A, Azad R. Conservative treatment modalities in retinoblastoma. Indian J Ophthalmol. 2013;61(9):479–85. doi:10.4103/0301-4738.119424.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Vajzovic LM, Murray TG, Aziz-Sultan MA, Schefler AC, Fernandes CE, Wolfe SC, et al. Clinicopathologic review of enucleated eyes after intra-arterial chemotherapy with melphalan for advanced retinoblastoma. Arch Ophthalmol. 2010;128(12):1619–23. doi:10.1001/archophthalmol.2010.296.

    Article  PubMed  Google Scholar 

  7. Reese AB, Hyman GA, Tapley ND, Forrest AW. The treatment of retinoblastoma by x-ray and triethylene melamine. AMA Arch Ophthalmol. 1958;60(5):897–906.

    Article  CAS  PubMed  Google Scholar 

  8. Kiribuchi M. Retrograde infusion of anti-cancer drugs to ophthalmic artery for intraocular malignant tumors. Nihon Ganka Gakkai Zasshi. 1966;70(11):1829–33.

    CAS  PubMed  Google Scholar 

  9. Samuels BL, Bitran JD. High-dose intravenous melphalan: a review. J Clin Oncol. 1995;13(7):1786–99.

    Article  CAS  PubMed  Google Scholar 

  10. Doll DC, Ringenberg QS, Yarbro J. Vascular toxicity associated with antineoplastic agents. J Clin Oncol. 1986;4(9):1405–17.

    Article  CAS  PubMed  Google Scholar 

  11. Scutaru AM, Wenzel M, Scheffler H, Wolber G, Gust R. Optimization of the N-lost drugs melphalan and bendamustine: synthesis and cytotoxicity of a new set of dendrimer-drug conjugates as tumor therapeutic agents. Bioconjug Chem. 2010;21(10):1728–43. doi:10.1021/bc900453f.

    Article  CAS  PubMed  Google Scholar 

  12. Steinle JJ, Zhang Q, Thompson KE, Toutounchian J, Yates CR, Soderland C, et al. Intra-ophthalmic artery chemotherapy triggers vascular toxicity through endothelial cell inflammation and leukostasis. Invest Ophthalmol Vis Sci. 2012;53(4):2439–45. doi:10.1167/iovs.12-9466.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhang Q, Jiang Y, Toutounchian J, Wilson MW, Morales-Tirado V, Miller DD, et al. Novel quinic acid derivative KZ-41 prevents retinal endothelial cell apoptosis without inhibiting retinoblastoma cell death through p38 signaling. Invest Ophthalmol Vis Sci. 2013;54(9):5937–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res. 2013;41(Database issue):D991–5. doi:10.1093/nar/gks1193.

    Article  CAS  PubMed  Google Scholar 

  15. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003;4(2):249–64. doi:10.1093/biostatistics/4.2.249.

    Article  PubMed  Google Scholar 

  16. Gautier L, Cope L, Bolstad BM, Irizarry RA. affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics. 2004;20(3):307–15.

    Article  CAS  PubMed  Google Scholar 

  17. Diboun I, Wernisch L, Orengo CA, Koltzenburg M. Microarray analysis after RNA amplification can detect pronounced differences in gene expression using limma. BMC Genomics. 2006;7:252. doi:10.1186/1471-2164-7-252.

    Article  PubMed  PubMed Central  Google Scholar 

  18. da Huang W, Sherman BT, Tan Q, Collins JR, Alvord WG, Roayaei J, et al. The DAVID gene functional classification tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol. 2007;8(9):R183. doi:10.1186/gb-2007-8-9-r183.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet. 2000;25(1):25–9. doi:10.1038/75556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wingender E, Dietze P, Karas H, Knüppel R. TRANSFAC: a database on transcription factors and their DNA binding sites. Nucleic Acids Res. 1996;24(1):238–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kohl M, Wiese S, Warscheid B. Cytoscape: software for visualization and analysis of biological networks. Methods Mol Biol. 2011;696:291–303. doi:10.1007/978-1-60761-987-1_18.

    Article  CAS  PubMed  Google Scholar 

  22. Reverter A, Hudson NJ, Nagaraj SH, Perez-Enciso M, Dalrymple BP. Regulatory impact factors: unraveling the transcriptional regulation of complex traits from expression data. Bioinformatics. 2010;26(7):896–904. doi:10.1093/bioinformatics/btq051.

    Article  CAS  PubMed  Google Scholar 

  23. Wu C, Zhu J, Zhang X. Integrating gene expression and protein-protein interaction network to prioritize cancer-associated genes. BMC Bioinformatics. 2012;13:182. doi:10.1186/1471-2105-13-182.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science. 2006;313(5795):1929–35.

    Article  CAS  PubMed  Google Scholar 

  25. Shields CL, Bianciotto CG, Jabbour P, Griffin GC, Ramasubramanian A, Rosenwasser R, et al. Intra-arterial chemotherapy for retinoblastoma: report no. 2, treatment complications. Arch Ophthalmol. 2011;129(11):1407–15.

    Article  CAS  PubMed  Google Scholar 

  26. Bharti AC, Aggarwal BB. Nuclear factor-kappa B and cancer: its role in prevention and therapy. Biochem Pharmacol. 2002;64(5–6):883–8.

    Article  CAS  PubMed  Google Scholar 

  27. O’Neill LA, Kaltschmidt C. NF-kB: a crucial transcription factor for glial and neuronal cell function. Trends Neurosci. 1997;20(6):252–8.

    Article  PubMed  Google Scholar 

  28. Soultati A, Mountzios G, Avgerinou C, Papaxoinis G, Pectasides D, Dimopoulos MA, et al. Endothelial vascular toxicity from chemotherapeutic agents: preclinical evidence and clinical implications. Cancer Treat Rev. 2012;38(5):473–83. doi:10.1016/j.ctrv.2011.09.002.

    Article  CAS  PubMed  Google Scholar 

  29. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860–7. doi:10.1038/nature01322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Poddar R, Sivasubramanian N, DiBello PM, Robinson K, Jacobsen DW. Homocysteine induces expression and secretion of monocyte chemoattractant protein-1 and interleukin-8 in human aortic endothelial cells implications for vascular disease. Circulation. 2001;103(22):2717–23.

    Article  CAS  PubMed  Google Scholar 

  31. Staunton DE, Marlin SD, Stratowa C, Dustin ML, Springer TA. Primary structure of ICAM-1 demonstrates interaction between members of the immunoglobulin and integrin supergene families. Cell. 1988;52(6):925–33.

    Article  CAS  PubMed  Google Scholar 

  32. Duckers HJ, Boehm M, True AL, Yet SF, San H, Park JL, et al. Heme oxygenase-1 protects against vascular constriction and proliferation. Nat Med. 2001;7(6):693–8. doi:10.1038/89068.

    Article  CAS  PubMed  Google Scholar 

  33. Van de Stolpe A, Caldenhoven E, Stade BG, Koenderman L, Raaijmakers J, Johnson JP, et al. 12-O-tetradecanoylphorbol-13-acetate-and tumor necrosis factor alpha-mediated induction of intercellular adhesion molecule-1 is inhibited by dexamethasone. Functional analysis of the human intercellular adhesion molecular-1 promoter. J Biol Chem. 1994;269(8):6185–92.

    PubMed  Google Scholar 

  34. Liu MT, Keirstead HS, Lane TE. Neutralization of the chemokine CXCL10 reduces inflammatory cell invasion and demyelination and improves neurological function in a viral model of multiple sclerosis. J Immunol. 2001;167(7):4091–7.

    Article  CAS  PubMed  Google Scholar 

  35. Knudsen TB, Kleinstreuer NC. Disruption of embryonic vascular development in predictive toxicology. Birth Defects Res C Embryo Today. 2011;93(4):312–23. doi:10.1002/bdrc.20223.

    Article  CAS  PubMed  Google Scholar 

  36. Butler JM, Kobayashi H, Rafii S. Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors. Nat Rev Cancer. 2010;10(2):138–46. doi:10.1038/nrc2791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Amati B, Land H. Myc-Max-Mad: a transcription factor network controlling cell cycle progression, differentiation and death. Curr Opin Genet Dev. 1994;4(1):102–8.

    Article  CAS  PubMed  Google Scholar 

  38. Kipshidze NN, Iversen P, Kim HS, Yiazdi H, Dangas G, Seaborn R, et al. Advanced c-myc antisense (AVI-4126)-eluting phosphorylcholine-coated stent implantation is associated with complete vascular healing and reduced neointimal formation in the porcine coronary restenosis model. Catheter Cardiovasc Interv. 2004;61(4):518–27.

    Article  PubMed  Google Scholar 

  39. Doll DC, Yarbro JW. Vascular toxicity associated with chemotherapy and hormonotherapy. Curr Opin Oncol. 1994;6(4):345–50.

    Article  CAS  PubMed  Google Scholar 

  40. Bjørkøy G, Lamark T, Brech A, Outzen H, Perander M, Øvervatn A, et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol. 2005;171(4):603–14.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mathew R, Karantza-Wadsworth V, White E. Role of autophagy in cancer. Nat Rev Cancer. 2007;7(12):961–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Murata T, Yamawaki H, Yoshimoto R, Hori M, Sato K, Ozaki H, et al. Chronic effect of doxorubicin on vascular endothelium assessed by organ culture study. Life Sci. 2001;69(22):2685–95.

    Article  CAS  PubMed  Google Scholar 

  43. Wojcik T, Buczek E, Majzner K, Kolodziejczyk A, Miszczyk J, Kaczara P, et al. Comparative endothelial profiling of doxorubicin and daunorubicin in cultured endothelial cells. Toxicol In Vitro. 2015;29(3):512–21.

    Article  CAS  PubMed  Google Scholar 

  44. Jr FF, Jarvis WD, Grant S. Growth arrest and non-apoptotic cell death associated with the suppression of c-myc expression in MCF-7 breast tumor cells following acute exposure to doxorubicin. Biochem Pharmacol. 1996;51(7):931–40.

    Article  Google Scholar 

  45. Javelaud D, Wietzerbin J, Delattre O, Besançon F. Induction of p21Waf1/Cip1 by TNF|[alpha]| requires NF-|[kappa]|B activity and antagonizes apoptosis in Ewing tumor cells. Oncogene. 2000;19(1):61–8.

    Article  CAS  PubMed  Google Scholar 

  46. Cha HJ, Byrom M, Mead PE, Ellington AD, Wallingford JB, Marcotte EM. Evolutionarily repurposed networks reveal the well-known antifungal drug thiabendazole to be a novel vascular disrupting agent. Plos Biol. 2012;10(8):255–70.

    Article  Google Scholar 

  47. Dunn C, Wiltshire C, MacLaren A, Gillespie DA. Molecular mechanism and biological functions of c-Jun N-terminal kinase signalling via the c-Jun transcription factor. Cell Signal. 2002;14(7):585–93.

    Article  CAS  PubMed  Google Scholar 

  48. Fogelstrand P, Feral CC, Zargham R, Ginsberg MH. Dependence of proliferative vascular smooth muscle cells on CD98hc (4F2hc, SLC3A2). J Exp Med. 2009;206(11):2397–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by the Hubei Provincial Natural Science Foundation of China (No. 2014CFB366).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Mei.

Ethics declarations

Conflicts of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Xing, Y., Liang, C. et al. In search of underlying mechanisms and potential drugs of melphalan-induced vascular toxicity through retinal endothelial cells using bioinformatics approach. Tumor Biol. 37, 6709–6718 (2016). https://doi.org/10.1007/s13277-015-4444-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4444-5

Keywords

Navigation