Skip to main content

Advertisement

Log in

Cooperative effect of BI-69A11 and celecoxib enhances radiosensitization by modulating DNA damage repair in colon carcinoma

  • Original Article
  • Published:
Tumor Biology

Abstract

Amplification of PI3K-Akt pathway promotes radioresistance in various cancers including colorectal carcinoma. Local recurrence in colon cancer causes poor prognosis affecting overall survival of cancer-affected patient population. To avoid local recurrence, pre-operative or post-operative additional radiotherapy is given. However, main concern regarding radiotherapy is to increase the radiosensitivity of malignant cell without hampering the activities of normal cells. In this context, addition of two or more than two chemotherapeutic drugs as a radiosensitizer is a common practice in radiation biology. BI-69A11 earlier showed potential apoptosis-inducing effect in melanoma and colon carcinoma. Celecoxib showed anti-cancer effects in both COX-2 dependent and independent pathways and used to act as a radiosensitizing enhancer. Here, we suggest that the combination of BI-69A11 and celecoxib inhibits the phosphorylation of ataxia telangiectasia mutated (ATM) kinase and DNA-PK responsible for ionizing radiation (IR)-induced double-strand break (DSB) repair. Moreover, the combinatorial effect of BI-69A11 and celecoxib attenuates the IR-induced G2/M cell cycle arrest. Furthermore, this combination also impairs IR-induced activation of Akt and downstream targets of ATM. This might lead to induced activation of apoptotic pathway after triple therapy treatment modulating pro-apoptotic and anti-apoptotic proteins. This activation of apoptotic pathway also showed the interdependence of PUMA and BAD in triple combination-treated colon cancer cells in a p53 independent manner. This study reveals the therapeutic potential of the triple combination therapy in prevention of radioresistance. Besides, it also demonstrates the cytotoxic effects of triple combination therapy in colon cancer. This study shows utility and potential implication on safety of the patients undergoing radiation therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hahnloser D, Haddock MG, Nelson H. Intraoperative radiotherapy in the multimodality approach to colorectal cancer. Surg Oncol Clin N Am. 2003;12:993–1013. ix.

    Article  PubMed  Google Scholar 

  2. Hocht S, Hammad R, Thiel HJ, Wiegel T, Siegmann A, Willner J, et al. Recurrent rectal cancer within the pelvis. A multicenter analysis of 123 patients and recommendations for adjuvant radiotherapy. Strahlenther Onkol. 2004;180:15–20.

    Article  PubMed  Google Scholar 

  3. Horgan AF, Finlay IG. Preoperative staging of rectal cancer allows selection of patients for preoperative radiotherapy. Br J Surg. 2000;87:575–9.

    Article  CAS  PubMed  Google Scholar 

  4. Schlemmer HP, Becker M, Bachert P, Dietz A, Rudat V, Vanselow B, et al. Alterations of intratumoral pharmacokinetics of 5-fluorouracil in head and neck carcinoma during simultaneous radiochemotherapy. Cancer Res. 1999;59:2363–9.

    CAS  PubMed  Google Scholar 

  5. Lawrence TS, Davis MA, Maybaum J. Dependence of 5-fluorouracil-mediated radiosensitization on DNA-directed effects. Int J Radiat Oncol Biol Phys. 1994;29:519–23.

    Article  CAS  PubMed  Google Scholar 

  6. Chen AY, Chou R, Shih SJ, Lau D, Gandara D. Enhancement of radiotherapy with DNA topoisomerase I-targeted drugs. Crit Rev Oncol Hematol. 2004;50:111–9.

    Article  PubMed  Google Scholar 

  7. Chen AY, Okunieff P, Pommier Y, Mitchell JB. Mammalian DNA topoisomerase I mediates the enhancement of radiation cytotoxicity by camptothecin derivatives. Cancer Res. 1997;57:1529–36.

    CAS  PubMed  Google Scholar 

  8. Kelland L. The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer. 2007;7:573–84.

    Article  CAS  PubMed  Google Scholar 

  9. Espinosa M, Martinez M, Aguilar JL, Mota A, De la Garza JG, Maldonado V, et al. Oxaliplatin activity in head and neck cancer cell lines. Cancer Chemother Pharmacol. 2005;55:301–5.

    Article  CAS  PubMed  Google Scholar 

  10. Huang SM, Harari PM. Modulation of radiation response after epidermal growth factor receptor blockade in squamous cell carcinomas: inhibition of damage repair, cell cycle kinetics, and tumor angiogenesis. Clin Cancer Res. 2000;6:2166–74.

    CAS  PubMed  Google Scholar 

  11. Dittmann K, Mayer C, Rodemann HP. Inhibition of radiation-induced EGFR nuclear import by C225 (cetuximab) suppresses DNA-PK activity. Radiother Oncol. 2005;76:157–61.

    Article  CAS  PubMed  Google Scholar 

  12. Sauer R, Becker H, Hohenberger W, Rodel C, Wittekind C, Fietkau R, et al. Preoperative versus postoperative chemoradiotherapy for rectal cancer. N Engl J Med. 2004;351:1731–40.

    Article  CAS  PubMed  Google Scholar 

  13. Rodel C, Martus P, Papadoupolos T, Fuzesi L, Klimpfinger M, Fietkau R, et al. Prognostic significance of tumor regression after preoperative chemoradiotherapy for rectal cancer. J Clin Oncol. 2005;23:8688–96.

    Article  PubMed  Google Scholar 

  14. Janjan NA, Abbruzzese J, Pazdur R, Khoo VS, Cleary K, Dubrow R, et al. Prognostic implications of response to preoperative infusional chemoradiation in locally advanced rectal cancer. Radiother Oncol. 1999;51:153–60.

    Article  CAS  PubMed  Google Scholar 

  15. Janjan NA, Crane C, Feig BW, Cleary K, Dubrow R, Curley S, et al. Improved overall survival among responders to preoperative chemoradiation for locally advanced rectal cancer. Am J Clin Oncol. 2001;24:107–12.

    Article  CAS  PubMed  Google Scholar 

  16. Krishnan S, Janjan NA, Skibber JM, Rodriguez-Bigas MA, Wolff RA, Das P, et al. Phase ii study of capecitabine (xeloda) and concomitant boost radiotherapy in patients with locally advanced rectal cancer. Int J Radiat Oncol Biol Phys. 2006;66:762–71.

    Article  CAS  PubMed  Google Scholar 

  17. Rodel C, Liersch T, Hermann RM, Arnold D, Reese T, Hipp M, et al. Multicenter phase ii trial of chemoradiation with oxaliplatin for rectal cancer. J Clin Oncol. 2007;25:110–7.

    Article  PubMed  Google Scholar 

  18. Mohiuddin M, Winter K, Mitchell E, Hanna N, Yuen A, Nichols C, et al. Randomized phase ii study of neoadjuvant combined-modality chemoradiation for distal rectal cancer: Radiation Therapy Oncology Group Trial 0012. J Clin Oncol. 2006;24:650–5.

    Article  CAS  PubMed  Google Scholar 

  19. Chistiakov DA, Voronova NV, Chistiakov PA. Genetic variations in DNA repair genes, radiosensitivity to cancer and susceptibility to acute tissue reactions in radiotherapy-treated cancer patients. Acta Oncol. 2008;47:809–24.

    Article  CAS  PubMed  Google Scholar 

  20. Jang NY, Kim DH, Cho BJ, Choi EJ, Lee JS, Wu HG, et al. Radiosensitization with combined use of olaparib and PI-103 in triple-negative breast cancer. BMC Cancer. 2015;15:89.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Franke TF. PI3K/Akt: getting it right matters. Oncogene. 2008;27:6473–88.

    Article  CAS  PubMed  Google Scholar 

  22. Manning BD, Cantley LC. Akt/Pkb signaling: navigating downstream. Cell. 2007;129:1261–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Franke TF, Yang SI, Chan TO, Datta K, Kazlauskas A, Morrison DK, et al. The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell. 1995;81:727–36.

    Article  CAS  PubMed  Google Scholar 

  24. Contessa JN, Abell A, Valerie K, Lin PS, Schmidt-Ullrich RK. ERBB receptor tyrosine kinase network inhibition radiosensitizes carcinoma cells. Int J Radiat Oncol Biol Phys. 2006;65:851–8.

    Article  CAS  PubMed  Google Scholar 

  25. Li B, Yuan M, Kim IA, Chang CM, Bernhard EJ, Shu HK. Mutant epidermal growth factor receptor displays increased signaling through the phosphatidylinositol-3 kinase/Akt pathway and promotes radioresistance in cells of astrocytic origin. Oncogene. 2004;23:4594–602.

    Article  CAS  PubMed  Google Scholar 

  26. Toulany M, Dittmann K, Kruger M, Baumann M, Rodemann HP. Radioresistance of K-RAS mutated human tumor cells is mediated through EGFR-dependent activation of PI3K-Akt pathway. Radiother Oncol. 2005;76:143–50.

    Article  CAS  PubMed  Google Scholar 

  27. Toulany M, Dittmann K, Baumann M, Rodemann HP. Radiosensitization of Ras-mutated human tumor cells in vitro by the specific EGF receptor antagonist BIBX1382BS. Radiother Oncol. 2005;74:117–29.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang T, Cui GB, Zhang J, Zhang F, Zhou YA, Jiang T, et al. Inhibition of PI3 kinases enhances the sensitivity of non-small cell lung cancer cells to ionizing radiation. Oncol Rep. 2010;24:1683–9.

    CAS  PubMed  Google Scholar 

  29. Li HF, Kim JS, Waldman T. Radiation-induced Akt activation modulates radioresistance in human glioblastoma cells. Radiat Oncol. 2009;4:43.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bussink J, van der Kogel AJ, Kaanders JH. Activation of the PI3-K/Akt pathway and implications for radioresistance mechanisms in head and neck cancer. Lancet Oncol. 2008;9:288–96.

    Article  CAS  PubMed  Google Scholar 

  31. Zhan M, Han ZC. Phosphatidylinositide 3-kinase/Akt in radiation responses. Histol Histopathol. 2004;19:915–23.

    CAS  PubMed  Google Scholar 

  32. Kim IA, Bae SS, Fernandes A, Wu J, Muschel RJ, McKenna WG, et al. Selective inhibition of Ras, phosphoinositide 3 kinase, and Akt isoforms increases the radiosensitivity of human carcinoma cell lines. Cancer Res. 2005;65:7902–10.

    CAS  PubMed  Google Scholar 

  33. Liu Y, Cui B, Qiao Y, Zhang Y, Tian Y, Jiang J, et al. Phosphoinositide-3-kinase inhibition enhances radiosensitization of cervical cancer in vivo. Int J Gynecol Cancer. 2011;21:100–5.

    Article  CAS  PubMed  Google Scholar 

  34. Brognard J, Clark AS, Ni Y, Dennis PA. Akt/protein kinase B is constitutively active in non-small cell lung cancer cells and promotes cellular survival and resistance to chemotherapy and radiation. Cancer Res. 2001;61:3986–97.

    CAS  PubMed  Google Scholar 

  35. Prevo R, Deutsch E, Sampson O, Diplexcito J, Cengel K, Harper J, et al. Class i PI3 kinase inhibition by the pyridinylfuranopyrimidine inhibitor PI-103 enhances tumor radiosensitivity. Cancer Res. 2008;68:5915–23.

    Article  CAS  PubMed  Google Scholar 

  36. Mukherjee B, Tomimatsu N, Amancherla K, Camacho CV, Pichamoorthy N, Burma S. The dual PI3K/mTOR inhibitor NVP-BEZ235 is a potent inhibitor of ATM- and DNA-PKcs-mediated DNA damage responses. Neoplasia. 2012;14:34–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kao GD, Jiang Z, Fernandes AM, Gupta AK, Maity A. Inhibition of phosphatidylinositol-3-oh kinase/Akt signaling impairs DNA repair in glioblastoma cells following ionizing radiation. J Biol Chem. 2007;282:21206–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Toulany M, Minjgee M, Kehlbach R, Chen J, Baumann M, Rodemann HP. ERBB2 expression through heterodimerization with ERBB1 is necessary for ionizing radiation- but not EGF-induced activation of Akt survival pathway. Radiother Oncol. 2010;97:338–45.

    Article  CAS  PubMed  Google Scholar 

  39. Fraser M, Harding SM, Zhao H, Coackley C, Durocher D, Bristow RG. MRE11 promotes Akt phosphorylation in direct response to DNA double-strand breaks. Cell Cycle. 2011;10:2218–32.

    Article  CAS  PubMed  Google Scholar 

  40. Toulany M, Lee KJ, Fattah KR, Lin YF, Fehrenbacher B, Schaller M, et al. Akt promotes post-irradiation survival of human tumor cells through initiation, progression, and termination of DNA-PKcs-dependent DNA double-strand break repair. Mol Cancer Res. 2012;10:945–57.

    Article  CAS  PubMed  Google Scholar 

  41. Khanna KK, Jackson SP. DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet. 2001;27:247–54.

    Article  CAS  PubMed  Google Scholar 

  42. Iliakis G, Wang H, Perrault AR, Boecker W, Rosidi B, Windhofer F, et al. Mechanisms of DNA double strand break repair and chromosome aberration formation. Cytogenet Genome Res. 2004;104:14–20.

    Article  CAS  PubMed  Google Scholar 

  43. Hsu FM, Zhang S, Chen BP. Role of DNA-dependent protein kinase catalytic subunit in cancer development and treatment. Transl Cancer Res. 2012;1:22–34.

    PubMed  PubMed Central  Google Scholar 

  44. Wolff E, Delisle B, Corrieu G, Gibert H. Freeze-drying of streptococcus thermophilus: a comparison between the vacuum and the atmospheric method. Cryobiology. 1990;27:569–75.

    Article  CAS  PubMed  Google Scholar 

  45. Chen BP, Uematsu N, Kobayashi J, Lerenthal Y, Krempler A, Yajima H, et al. Ataxia telangiectasia mutated (ATM) is essential for DNA-PKcs phosphorylations at the Thr-2609 cluster upon DNA double strand break. J Biol Chem. 2007;282:6582–7.

    Article  CAS  PubMed  Google Scholar 

  46. Bozulic L, Surucu B, Hynx D, Hemmings BA. PKBalpha/Akt1 acts downstream of DNA-PK in the DNA double-strand break response and promotes survival. Mol Cell. 2008;30:203–13.

    Article  CAS  PubMed  Google Scholar 

  47. Meyn RE. Linking PTEN with genomic instability and DNA repair. Cell Cycle. 2009;8:2322–3.

    Article  CAS  PubMed  Google Scholar 

  48. Affolter A, Drigotas M, Fruth K, Schmidtmann I, Brochhausen C, Mann WJ, et al. Increased radioresistance via G12S K-RAS by compensatory upregulation of MAPK and PI3K pathways in epithelial cancer. Head Neck. 2013;35:220–8.

    Article  PubMed  Google Scholar 

  49. Choi MJ, Park EJ, Oh JH, Min KJ, Yang ES, Kim YH, et al. Cafestol, a coffee-specific diterpene, induces apoptosis in renal carcinoma Caki cells through down-regulation of anti-apoptotic proteins and Akt phosphorylation. Chem Biol Interact. 2011;190:102–8.

    Article  CAS  PubMed  Google Scholar 

  50. Toulany M, Kasten-Pisula U, Brammer I, Wang S, Chen J, Dittmann K, et al. Blockage of epidermal growth factor receptor-phosphatidylinositol 3-kinase-Akt signaling increases radiosensitivity of K-RAS mutated human tumor cells in vitro by affecting DNA repair. Clin Cancer Res. 2006;12:4119–26.

    Article  CAS  PubMed  Google Scholar 

  51. Viniegra JG, Martinez N, Modirassari P, Hernandez Losa J, Parada Cobo C, Sanchez-Arevalo Lobo VJ, et al. Full activation of Pkb/Akt in response to insulin or ionizing radiation is mediated through ATM. J Biol Chem. 2005;280:4029–36.

    Article  CAS  PubMed  Google Scholar 

  52. Khalil A, Morgan RN, Adams BR, Golding SE, Dever SM, Rosenberg E, et al. ATM-dependent ERK signaling via Akt in response to DNA double-strand breaks. Cell Cycle. 2011;10:481–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hawkins AJ, Golding SE, Khalil A, Valerie K. DNA double-strand break—induced pro-survival signaling. Radiother Oncol. 2011;101:13–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Park JS, Jun HJ, Cho MJ, Cho KH, Lee JS, Zo JI, et al. Radiosensitivity enhancement by combined treatment of celecoxib and gefitinib on human lung cancer cells. Clin Cancer Res. 2006;12:4989–99.

    Article  CAS  PubMed  Google Scholar 

  55. Maier TJ, Schilling K, Schmidt R, Geisslinger G, Grosch S. Cyclooxygenase-2 (COX-2)-dependent and -independent anticarcinogenic effects of celecoxib in human colon carcinoma cells. Biochem Pharmacol. 2004;67:1469–78.

    Article  CAS  PubMed  Google Scholar 

  56. Hsiao PW, Chang CC, Liu HF, Tsai CM, Chiu TH, Chao JI. Activation of p38 mitogen-activated protein kinase by celecoxib oppositely regulates survivin and gamma-H2AX in human colorectal cancer cells. Toxicol Appl Pharmacol. 2007;222:97–104.

    Article  CAS  PubMed  Google Scholar 

  57. Sakoguchi-Okada N, Takahashi-Yanaga F, Fukada K, Shiraishi F, Taba Y, Miwa Y, et al. Celecoxib inhibits the expression of survivin via the suppression of promoter activity in human colon cancer cells. Biochem Pharmacol. 2007;73:1318–29.

    Article  CAS  PubMed  Google Scholar 

  58. Bijman MN, Hermelink CA, van Berkel MP, Laan AC, Janmaat ML, Peters GJ, et al. Interaction between celecoxib and docetaxel or cisplatin in human cell lines of ovarian cancer and colon cancer is independent of COX-2 expression levels. Biochem Pharmacol. 2008;75:427–37.

    Article  CAS  PubMed  Google Scholar 

  59. Liu DB, Long GX, Mei Q, Wang JF, Hu GY, Gan L, et al. Anticancer effects of celecoxib through inhibiton of STAT3 phosphorylation and Akt phosphorylation in nasopharyngeal carcinoma cell lines. Pharmazie. 2014;69:358–61.

    CAS  PubMed  Google Scholar 

  60. Kim YM, Pyo H. Cooperative enhancement of radiosensitivity after combined treatment of 17-(allylamino)-17-demethoxygeldanamycin and celecoxib in human lung and colon cancer cell lines. DNA Cell Biol. 2012;31:15–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Xia S, Zhao Y, Yu S, Zhang M. Activated PI3K/Akt/COX-2 pathway induces resistance to radiation in human cervical cancer HeLa cells. Cancer Biother Radiopharm. 2010;25:317–23.

    Article  CAS  PubMed  Google Scholar 

  62. Kim YM, Jeong IH, Pyo H. Celecoxib enhances the radiosensitizing effect of 7-hydroxystaurosporine (UCN-01) in human lung cancer cell lines. Int J Radiat Oncol Biol Phys. 2012;83:e399–407.

    Article  CAS  PubMed  Google Scholar 

  63. Gaitonde S, De SK, Tcherpakov M, Dewing A, Yuan H, Riel-Mehan M, et al. Bi-69a11-mediated inhibition of Akt leads to effective regression of xenograft melanoma. Pigment Cell Melanoma Res. 2009;22:187–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Feng Y, Barile E, De SK, Stebbins JL, Cortez A, Aza-Blanc P, et al. Effective inhibition of melanoma by Bi-69a11 is mediated by dual targeting of the Akt and NF-kappaB pathways. Pigment Cell Melanoma Res. 2011;24:703–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Barile E, De SK, Feng Y, Chen V, Yang L, Ronai Z, et al. Synthesis and SAR studies of dual Akt/NF-kappaB inhibitors against melanoma. Chem Biol Drug Des. 2013;82:520–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Forino M, Jung D, Easton JB, Houghton PJ, Pellecchia M. Virtual docking approaches to protein kinase B inhibition. J Med Chem. 2005;48:2278–81.

    Article  CAS  PubMed  Google Scholar 

  67. Sarkar S, Mazumdar A, Dash R, Sarkar D, Fisher PB, Mandal M. Zd6474, a dual tyrosine kinase inhibitor of EGFR and VEGFR-2, inhibits MAPK/ERK and Akt/PI3-K and induces apoptosis in breast cancer cells. Cancer Biol Ther. 2010;9:592–603.

    Article  CAS  PubMed  Google Scholar 

  68. Buch K, Peters T, Nawroth T, Sanger M, Schmidberger H, Langguth P. Determination of cell survival after irradiation via clonogenic assay versus multiple MTT assay—a comparative study. Radiat Oncol. 2012;7:1.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Mandal M, Adam L, Mendelsohn J, Kumar R. Nuclear targeting of BAX during apoptosis in human colorectal cancer cells. Oncogene. 1998;17:999–1007.

    Article  CAS  PubMed  Google Scholar 

  70. Rajput S, Kumar BN, Dey KK, Pal I, Parekh A, Mandal M. Molecular targeting of Akt by thymoquinone promotes G(1) arrest through translation inhibition of cyclin D1 and induces apoptosis in breast cancer cells. Life Sci. 2013;93:783–90.

    Article  CAS  PubMed  Google Scholar 

  71. Rajput S, Kumar BN, Sarkar S, Das S, Azab B, Santhekadur PK, et al. Targeted apoptotic effects of thymoquinone and tamoxifen on XIAP mediated Akt regulation in breast cancer. PLoS One. 2013;8:e61342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Saha B, Adhikary A, Ray P, Saha S, Chakraborty S, Mohanty S, et al. Restoration of tumor suppressor p53 by differentially regulating pro- and anti-p53 networks in HPV-18-infected cervical cancer cells. Oncogene. 2012;31:173–86.

    Article  CAS  PubMed  Google Scholar 

  73. Firsanov DV, Solovjeva LV, Svetlova MP. H2AX phosphorylation at the sites of DNA double-strand breaks in cultivated mammalian cells and tissues. Clin Epigenetics. 2011;2:283–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kumar A, Fernandez-Capetillo O, Carrera AC. Nuclear phosphoinositide 3-kinase beta controls double-strand break DNA repair. Proc Natl Acad Sci U S A. 2010;107:7491–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Norbury CJ, Zhivotovsky B. DNA damage-induced apoptosis. Oncogene. 2004;23:2797–808.

    Article  CAS  PubMed  Google Scholar 

  76. Gardai SJ, Hildeman DA, Frankel SK, Whitlock BB, Frasch SC, Borregaard N, et al. Phosphorylation of BAX Ser184 by Akt regulates its activity and apoptosis in neutrophils. J Biol Chem. 2004;279:21085–95.

    Article  CAS  PubMed  Google Scholar 

  77. Kazi A, Sun J, Doi K, Sung SS, Takahashi Y, Yin H, et al. The BH3 alpha-helical mimic BH3-M6 disrupts Bcl-X(L), Bcl-2, and Mcl-1 protein-protein interactions with BAX, BAK, BAD, or BIM and induces apoptosis in a BAX- and BIM-dependent manner. J Biol Chem. 2011;286:9382–92.

    Article  CAS  PubMed  Google Scholar 

  78. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell. 1997;91:231–41.

    Article  CAS  PubMed  Google Scholar 

  79. Yu J, Zhang L. PUMA, a potent killer with or without p53. Oncogene. 2008;27 Suppl 1:S71–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Toruno C, Carbonneau S, Stewart RA, Jette C. Interdependence of BAD and PUMA during ionizing-radiation-induced apoptosis. PLoS One. 2014;9:e88151.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Ravoori S, Feng Y, Neale JR, Jeyabalan J, Srinivasan C, Hein DW, et al. Dose-dependent reduction of 3,2′-dimethyl-4-aminobiphenyl-derived DNA adducts in colon and liver of rats administered celecoxib. Mutat Res. 2008;638:103–9.

    Article  CAS  PubMed  Google Scholar 

  82. Xiao H, Zhang Q, Lin Y, Reddy BS, Yang CS. Combination of atorvastatin and celecoxib synergistically induces cell cycle arrest and apoptosis in colon cancer cells. Int J Cancer. 2008;122:2115–24.

    Article  CAS  PubMed  Google Scholar 

  83. Grosch S, Tegeder I, Niederberger E, Brautigam L, Geisslinger G. COX-2 independent induction of cell cycle arrest and apoptosis in colon cancer cells by the selective COX-2 inhibitor celecoxib. FASEB J. 2001;15:2742–4.

    CAS  PubMed  Google Scholar 

  84. Yang Z, Xiao H, Jin H, Koo PT, Tsang DJ, Yang CS. Synergistic actions of atorvastatin with gamma-tocotrienol and celecoxib against human colon cancer HT29 and HCT116 cells. Int J Cancer. 2010;126:852–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Liu JP, Wei HB, Zheng ZH, Guo WP, Fang JF. Celecoxib increases retinoid sensitivity in human colon cancer cell lines. Cell Mol Biol Lett. 2010;15:440–50.

    Article  CAS  PubMed  Google Scholar 

  86. Uddin S, Ahmed M, Hussain A, Assad L, Al-Dayel F, Bavi P, et al. Cyclooxygenase-2 inhibition inhibits PI3K/Akt kinase activity in epithelial ovarian cancer. Int J Cancer. 2010;126:382–94.

    Article  CAS  PubMed  Google Scholar 

  87. Lakin ND, Jackson SP. Regulation of p53 in response to DNA damage. Oncogene. 1999;18:7644–55.

    Article  CAS  PubMed  Google Scholar 

  88. He K, Zheng X, Zhang L, Yu J. HSP90 inhibitors promote p53-dependent apoptosis through PUMA and BAX. Mol Cancer Ther. 2013;12:2559–68.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank DBT for the grant support. We thank Dr. PB Fisher and Dr. Maurizio Pellecchia for providing us the key compound BI-69A11 for research purpose and for their kind help. We also thank Mr. Priyanshu for his kind help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahitosh Mandal.

Ethics declarations

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, I., Dey, K.K., Chaurasia, M. et al. Cooperative effect of BI-69A11 and celecoxib enhances radiosensitization by modulating DNA damage repair in colon carcinoma. Tumor Biol. 37, 6389–6402 (2016). https://doi.org/10.1007/s13277-015-4399-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4399-6

Keywords

Navigation