Skip to main content
Log in

A c-Myc/miR-17-5p feedback loop regulates metastasis and invasion of hepatocellular carcinoma

  • Original Article
  • Published:
Tumor Biology

Abstract

The molecular mechanisms that control metastasis of hepatocellular cancer (HCC) are still poorly understood. It has been determined that microRNA (miRNA) expression has tissue and cell specific, and decreased expression of specific miRNA could induce tumor genesis or metastasis. In this study, we identified that miR-17-5p was expressed lower in high metastatic capability HCC cell lines HCCLM3 and MHCC97H than low metastatic HCC cell line HepG2 by real-time (RT)-PCR. Restoration of miR-17-5p could significantly repress the invasiveness and metastasis of MHCC97H cell line. Furthermore, we validated c-Myc as a downstream and functional target of miR-17-5p using luciferase reporter assay. Immunohistochemical assay revealed that the expression of c-Myc protein levels was significantly increased in cancerous tissues compared with para-tumor tissues. After clinical data analysis, we observed that the higher level of c-Myc was significantly associated with a reduced overall survival (p = 0.0209). Consistent with previous research, we also demonstrated that c-Myc could upregulate the expression of miR-17-5p. Taken together, our data indicated that there is a regulatory feedback loop between miR-17-5p and c-Myc, in which miR-17-5p could suppress some of the distinguishing features, invasion, and metastasis, of oncogenic c-Myc in HCC cells, and meanwhile, miR-17-5p is upregulated by c-Myc role as a transcription factor, although further studies are still needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90. doi:10.3322/caac.20107.

    Article  PubMed  Google Scholar 

  2. Ambros V. The functions of animal microRNAs. Nature. 2004;431(7006):350–5. doi:10.1038/nature02871.

    Article  CAS  PubMed  Google Scholar 

  3. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    Article  CAS  PubMed  Google Scholar 

  4. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33. doi:10.1016/j.cell.2009.01.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lujambio A, Lowe SW. The microcosmos of cancer. Nature. 2012;482(7385):347–55. doi:10.1038/nature10888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Iorio MV, Croce CM. microRNA involvement in human cancer. Carcinogenesis. 2012;33(6):1126–33. doi:10.1093/carcin/bgs140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ebert MS, Sharp PA. Roles for microRNAs in conferring robustness to biological processes. Cell. 2012;149(3):515–24. doi:10.1016/j.cell.2012.04.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Eilers M, Eisenman RN. Myc’s broad reach. Genes Dev. 2008;22(20):2755–66. doi:10.1101/gad.1712408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lin CY, Loven J, Rahl PB, Paranal RM, Burge CB, Bradner JE, et al. Transcriptional amplification in tumor cells with elevated c-Myc. Cell. 2012;151(1):56–67. doi:10.1016/j.cell.2012.08.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nie Z, Hu G, Wei G, Cui K, Yamane A, Resch W, et al. c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells. Cell. 2012;151(1):68–79. doi:10.1016/j.cell.2012.08.033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fernandez PC, Frank SR, Wang L, Schroeder M, Liu S, Greene J, et al. Genomic targets of the human c-Myc protein. Genes Dev. 2003;17(9):1115–29. doi:10.1101/gad.1067003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li Z, Van Calcar S, Qu C, Cavenee WK, Zhang MQ, Ren B. A global transcriptional regulatory role for c-Myc in Burkitt’s lymphoma cells. Proc Natl Acad Sci U S A. 2003;100(14):8164–9. doi:10.1073/pnas.1332764100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Blancato J, Singh B, Liu A, Liao DJ, Dickson RB. Correlation of amplification and overexpression of the c-myc oncogene in high-grade breast cancer: FISH, in situ hybridisation and immunohistochemical analyses. Br J Cancer. 2004;90(8):1612–9. doi:10.1038/sj.bjc.6601703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Planas-Silva MD, Bruggeman RD, Grenko RT, Smith JS. Overexpression of c-Myc and Bcl-2 during progression and distant metastasis of hormone-treated breast cancer. Exp Mol Pathol. 2007;82(1):85–90. doi:10.1016/j.yexmp.2006.09.001.

    Article  CAS  PubMed  Google Scholar 

  15. Sierra A, Castellsague X, Escobedo A, Moreno A, Drudis T, Fabra A. Synergistic cooperation between c-Myc and Bcl-2 in lymph node progression of T1 human breast carcinomas. Breast Cancer Res Treat. 1999;54(1):39–45.

    Article  CAS  PubMed  Google Scholar 

  16. Cairo S, Wang Y, de Reynies A, Duroure K, Dahan J, Redon MJ, et al. Stem cell-like micro-RNA signature driven by Myc in aggressive liver cancer. Proc Natl Acad Sci U S A. 2010;107(47):20471–6. doi:10.1073/pnas.1009009107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dang CV. c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol. 1999;19(1):1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dang CV. MYC on the path to cancer. Cell. 2012;149(1):22–35. doi:10.1016/j.cell.2012.03.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bonauer A, Dimmeler S. The microRNA-17-92 cluster: still a miRacle? Cell Cycle. 2009;8(23):3866–73.

    Article  CAS  PubMed  Google Scholar 

  20. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, et al. A microRNA polycistron as a potential human oncogene. Nature. 2005;435(7043):828–33. doi:10.1038/nature03552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ota A, Tagawa H, Karnan S, Tsuzuki S, Karpas A, Kira S, et al. Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res. 2004;64(9):3087–95.

    Article  CAS  PubMed  Google Scholar 

  22. Ptashne M. Binding reactions: epigenetic switches, signal transduction and cancer. Curr Biol CB. 2009;19(6):R234–41. doi:10.1016/j.cub.2009.02.015.

    Article  CAS  PubMed  Google Scholar 

  23. Hitchler MJ, Domann FE. Metabolic defects provide a spark for the epigenetic switch in cancer. Free Radic Biol Med. 2009;47(2):115–27. doi:10.1016/j.freeradbiomed.2009.04.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. El Tayebi HM, Omar K, Hegy S, El Maghrabi M, El Brolosy M, Hosny KA, et al. Repression of miR-17-5p with elevated expression of E2F-1 and c-MYC in non-metastatic hepatocellular carcinoma and enhancement of cell growth upon reversing this expression pattern. Biochem Biophys Res Commun. 2013;434(3):421–7. doi:10.1016/j.bbrc.2013.04.003.

    Article  PubMed  Google Scholar 

  25. Li Y, Tang ZY, Ye SL, Liu YK, Chen J, Xue Q, et al. Establishment of cell clones with different metastatic potential from the metastatic hepatocellular carcinoma cell line MHCC97. World J Gastroenterol WJG. 2001;7(5):630–6.

    CAS  PubMed  Google Scholar 

  26. Sun FX, Tang ZY, Lui KD, Ye SL, Xue Q, Gao DM, et al. Establishment of a metastatic model of human hepatocellular carcinoma in nude mice via orthotopic implantation of histologically intact tissues. Int J Cancer J Int Du Cancer. 1996;66(2):239–43. doi:10.1002/(SICI)1097-0215(19960410)66:2<239::AID-IJC17>3.0.CO;2-7.

    Article  CAS  Google Scholar 

  27. Li Y, Tang Y, Ye L, Liu B, Liu K, Chen J, et al. Establishment of a hepatocellular carcinoma cell line with unique metastatic characteristics through in vivo selection and screening for metastasis-related genes through cDNA microarray. J Cancer Res Clin Oncol. 2003;129(1):43–51. doi:10.1007/s00432-002-0396-4.

    CAS  PubMed  Google Scholar 

  28. Pi H, Xu S, Zhang L, Guo P, Li Y, Xie J, et al. Dynamin 1-like-dependent mitochondrial fission initiates overactive mitophagy in the hepatotoxicity of cadmium. Autophagy. 2013;9(11):1780–800. doi:10.4161/auto.25665.

    Article  CAS  PubMed  Google Scholar 

  29. Hu YJ, Li HY, Qiu KJ, Li DC, Zhou JH, Hu YH, et al. Downregulation of Notch1 inhibits the invasion of human hepatocellular carcinoma Hepg2 and MHCC97H cells through the regulation of PTEN and FAK. Int J Mol Med. 2014;34(4):1081–6. doi:10.3892/ijmm.2014.1889.

    CAS  PubMed  Google Scholar 

  30. Tao ZH, Wan JL, Zeng LY, Xie L, Sun HC, Qin LX, et al. miR-612 suppresses the invasive-metastatic cascade in hepatocellular carcinoma. J Exp Med. 2013;210(4):789–803. doi:10.1084/jem.20120153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell. 2007;129(7):1401–14. doi:10.1016/j.cell.2007.04.040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhu XD, Zhang JB, Zhuang PY, Zhu HG, Zhang W, Xiong YQ, et al. High expression of macrophage colony-stimulating factor in peritumoral liver tissue is associated with poor survival after curative resection of hepatocellular carcinoma. J Clin Oncol Off J Am Soc Clin Oncol. 2008;26(16):2707–16. doi:10.1200/JCO.2007.15.6521.

    Article  Google Scholar 

  33. Farazi PA, DePinho RA. Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer. 2006;6(9):674–87. doi:10.1038/nrc1934.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang L, Huang J, Yang N, Greshock J, Megraw MS, Giannakakis A, et al. microRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci U S A. 2006;103(24):9136–41. doi:10.1073/pnas.0508889103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Secombe J, Pierce SB, Eisenman RN. Myc: a weapon of mass destruction. Cell. 2004;117(2):153–6.

    Article  CAS  PubMed  Google Scholar 

  36. Berg T, Cohen SB, Desharnais J, Sonderegger C, Maslyar DJ, Goldberg J, et al. Small-molecule antagonists of Myc/Max dimerization inhibit Myc-induced transformation of chicken embryo fibroblasts. Proc Natl Acad Sci U S A. 2002;99(6):3830–5. doi:10.1073/pnas.062036999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lal A, Navarro F, Maher CA, Maliszewski LE, Yan N, O’Day E, et al. miR-24 Inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to “seedless” 3′UTR microRNA recognition elements. Mol Cell. 2009;35(5):610–25. doi:10.1016/j.molcel.2009.08.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lin F, Ding R, Zheng S, Xing D, Hong W, Zhou Z, et al. Decrease expression of microRNA-744 promotes cell proliferation by targeting c-Myc in human hepatocellular carcinoma. Cancer Cell Int. 2014;14:58. doi:10.1186/1475-2867-14-58.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The project was jointly supported by the National Science Foundation of China (81272437, 81472675).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weizhong Wu.

Ethics declarations

All procedures were approved by the Zhongshan Hospital Research Ethics Committee. Informed consent was obtained from each patient according to regulations set forth by the Ethics Committee.

Conflicts of interest

None

Authors’ contributions

DL Liu, LL Dong, and WZ Wu conceived and designed the study. DL Liu, LL Dong, Y Liu, and D Wen performed the experiments including IHC, RT-PCR, Western blotting and in vivo assays. DL Liu and LL Dong performed luciferase reporter assays. DL Liu, LL Dong, and WZ Wu analyzed the data and prepared the manuscript. DM Gao, HC Sun, and J Fan participated in the study design. All authors read and approved the final manuscript.

Additional information

Dongli Liu and Lili Dong contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Dong, L., Liu, Y. et al. A c-Myc/miR-17-5p feedback loop regulates metastasis and invasion of hepatocellular carcinoma. Tumor Biol. 37, 5039–5047 (2016). https://doi.org/10.1007/s13277-015-4355-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4355-5

Keywords

Navigation