Skip to main content

Advertisement

Log in

FAM98A is a novel substrate of PRMT1 required for tumor cell migration, invasion, and colony formation

  • Original Article
  • Published:
Tumor Biology

Abstract

Protein arginine methylation, which is mediated by a family of protein arginine methyltransferases (PRMTs), is associated with numerous fundamental cellular processes. Accumulating studies have revealed that the expression of multiple PRMTs promotes cancer progression. In this study, we examined the role of PRMT1 in ovarian cancer cells. PRMT1 is expressed in multiple ovarian cancer cells, and the depletion of its expression suppressed colony formation, in vivo proliferation, migration, and invasion. To gain insight into PRMT1-mediated cancer progression, we searched for novel substrates of PRMT1. We found that FAM98A, whose physiological function is unknown, was arginine-methylated by PRMT1. FAM98A is expressed in numerous ovarian cancer cell lines and is important for the malignant characteristics of ovarian cancer cells. Our results indicate the possible role of the PRMT1-FAM98A pathway in cancer progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Karve TM, Cheema AK. Small changes huge impact: the role of protein posttranslational modifications in cellular homeostasis and disease. J Amino Acids. 2011;2011:207691.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gary JD, Clarke S. RNA and protein interactions modulated by protein arginine methylation. Prog Nucleic Acid Res Mol Biol. 1998;61:65–131.

    Article  CAS  PubMed  Google Scholar 

  3. Boffa LC, Karn J, Vidali G, Allfrey VG. Distribution of NG, NG,-dimethylarginine in nuclear protein fractions. Biochem Biophys Res Commun. 1977;74:969–76.

    Article  CAS  PubMed  Google Scholar 

  4. Feng Y, Hadjikyriacou A, Clarke SG. Substrate specificity of human protein arginine methyltransferase 7 (PRMT7): the importance of acidic residues in the double E loop. J Biol Chem. 2014;21; 289(47):32604–16.

    Article  Google Scholar 

  5. Zurita-Lopez CI, Sandberg T, Kelly R, Clarke SG. Human protein arginine methyltransferase 7 (PRMT7) is a type III enzyme forming ω-NG- monomethylated arginine residues. J Biol Chem. 2012;287:7859–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yang Y, Hadjikyriacou A, Xia Z, Gayatri S, Kim D, Zurita-Lopez C, et al. PRMT9 is a Type II methyltransferase that methylates the splicing factor SAP145. Nature Commun. 2015;6:6428.

    Article  CAS  Google Scholar 

  7. Bedford MT, Clarke SG. Protein arginine methylation in mammals: who, what and why. Mol Cell. 2009;33:1–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yu Z, Chen T, Hebert J, Li E, Richard S. A mouse PRMT1 null allele defines an essential role for arginine methylation in genome maintenance and cell proliferation. Mol Cell Biol. 2009;29:2982–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bedford MT, Richard S. Arginine methylation an emerging regulator of protein function. Mol Cell. 2005;18(3):263–72.

    Article  CAS  PubMed  Google Scholar 

  10. Thandapani P, O’connor TR, Bailey TL, Richard S. Defining the RGG/RG motif. Mol Cell. 2013;50:613–23.

    Article  CAS  PubMed  Google Scholar 

  11. Seligson DB, Horvath S, McBrian MA, Mah V, Yu H, Tze S, et al. Global histone modification patterns predict risk of prostate cancer recurrence. Nature. 2005;435:1262–6.

    Article  CAS  PubMed  Google Scholar 

  12. Le Romancer M, Treilleux I, Bouchekioua Bouzaghou K, Sentis S, Corbo L. Methylation, a key step for nongenomic estrogen signaling in breast tumors. Steroids. 2010;75:560–4.

    Article  PubMed  Google Scholar 

  13. Cheung N, Chan LC, Thompson A, Cleary ML, So CW. Protein arginine methyltransferase-dependent oncogenesis. Nature Cell Biol. 2007;9:1208–15.

    Article  CAS  PubMed  Google Scholar 

  14. Yoshimatsu M, Toyokawa G, Hayami S, Unoki M, Tsunoda T, Field HI, et al. Dysregulation of PRMT1 and PRMT6, Type I arginine methyltransferases, is involved in various types of human cancers. Int J Cancer. 2011;128:562–73.

    Article  CAS  PubMed  Google Scholar 

  15. Mathioudaki K, Papadokostopoulou A, Scorilas A, Xynopoulos D, Agnanti N, Talieri M. The PRMT1 gene expression pattern in colon cancer. Br J Cancer. 2008;99:2094–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mathioudaki K, Scorilas A, Ardavanis A, Lymberi P, Tsiambas E, Devetzi M, et al. Clinical evaluation of PRMT1 gene expression in breast cancer. Tumour Biol. 2011;32:575–82.

    Article  CAS  PubMed  Google Scholar 

  17. Zou L, Zhang H, Du C, Liu X, Zhu S, Zhang W, et al. Correlation of SRSF1 and PRMT1 expression with clinical status of pediatric acute lymphoblastic leukemia. J Hematol Oncol. 2012;5:42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Avasarala S, Van Scoyk M, Karuppusamy Rathinam MK, Zerayesus S, Zhao X, Zhang W, et al. PRMT1 is a novel regulator of epithelial-mesenchymal-transition in non-small cell lung cancer. J Biol Chem. 2015;290(21):13479–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Baldwin RM, Morettin A, Paris G, Goulet I, Côté J. Alternatively spliced protein arginine methyltransferase 1 isoform PRMT1v2 promotes the survival and invasiveness of breast cancer cells. Cell Cycle. 2012;11(24):4597–612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kajiyama H, Kikkawa F, Suzuki T, Shibata K, Ino K, Mizutani S. Prolonged survival and decreased invasive activity attributable to dipeptidyl peptidase IV overexpression in ovarian carcinoma. Cancer Res. 2002;62:2753–7.

    CAS  PubMed  Google Scholar 

  21. Yamaguchi A, Kitajo K. The effect of PRMT1-mediated arginine methylation on the subcellular localization, stress granules, and detergent-insoluble aggregates of FUS/TLS. PLoS One. 2012;7(11):e49267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pérez-González A, Pazo A, Navajas R, Ciordia S, Rodriguez-Frandsen A, Nieto A. hCLE/C14orf166 associates with DDX1-HSPC117-FAM98B in a novel transcription-dependent shuttling RNA-transporting complex. PLoS One. 2014;9(3):e90957.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Popow J, Jurkin J, Schleiffer A, Martinez J. Analysis of orthologous groups reveals archease and DDX1 as tRNA splicing factors. Nature. 2014;511(7507):104–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We appreciate the members of the Division of Cancer Biology for their helpful discussions and technical assistance. This research was funded by the Ministry of Education, Culture, Sports, Science and Technology of Japan (Nanomedicine Molecular Science, 2306) and by the Takeda Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Senga.

Ethics declarations

Animal experiments were conducted in accordance with the regulations of the Faculty of Medicine of Nagoya University.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 56 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akter, K.A., Mansour, M.A., Hyodo, T. et al. FAM98A is a novel substrate of PRMT1 required for tumor cell migration, invasion, and colony formation. Tumor Biol. 37, 4531–4539 (2016). https://doi.org/10.1007/s13277-015-4310-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4310-5

Keywords

Navigation