Skip to main content

Advertisement

Log in

Effects of silibinin on growth and invasive properties of human ovarian carcinoma cells through suppression of heregulin/HER3 pathway

  • Original Article
  • Published:
Tumor Biology

Abstract

Epithelial ovarian cancer (EOC) is the most fatal gynecological malignancy due to its high proliferative and invasive capacities. A heregulin (HRG)/HER3 autocrine loop increases proliferative and metastatic properties of EOC cells, suggesting that modulators of this signaling pathway may prove effective to trammel growth and motility of these cells. This study aimed to evaluate the effects of multi-tyrosine kinase inhibitor silibinin on proliferative and invasive characteristics of EOC cell lines OVCAR8 and SKOV3 through suppression of the HRG/HER3 pathway. To achieve this, the effects of silibinin on proliferation, DNA synthesis, clonogenicity, cell cycle progression, cathepsin B enzymatic activity, and migration and invasion were explored in vitro. Silibinin suppressed proliferation, DNA synthesis, and clonogenic abilities of OVCAR8 and SKOV3 cells through inhibition of the autocrine HRG/HER3 circuit. Silibinin-mediated attenuation of the HER3 signaling disabled the HER3/AKT/survivin axis and thereby, induced G1/S cell cycle arrest. Furthermore, silibinin reduced invasive potentials of the EOC cells through quelling the HRG/HER3 pathway and suppression of cathepsin B activity. Altogether, these results suggest that silibinin is a potential anti-cancer drug to inhibit proliferative and invasive characteristics of the EOC cells that exhibit an autocrine HRG/HER3 pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bowtell DD. The genesis and evolution of high-grade serous ovarian cancer. Nat Rev Cancer. 2010;10(11):803–8.

    Article  CAS  PubMed  Google Scholar 

  2. Dinh P et al. New therapies for ovarian cancer: cytotoxics and molecularly targeted agents. Crit Rev Oncol Hematol. 2008;67(2):103–12.

    Article  PubMed  Google Scholar 

  3. Siwak DR et al. Targeting the epidermal growth factor receptor in epithelial ovarian cancer: current knowledge and future challenges. J Oncol. 2010;2010:568938.

    Article  CAS  PubMed  Google Scholar 

  4. Garrett JT et al. Transcriptional and posttranslational up-regulation of HER3 (ErbB3) compensates for inhibition of the HER2 tyrosine kinase. Proc Natl Acad Sci U S A. 2011;108(12):5021–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tzahar E et al. A hierarchical network of interreceptor interactions determines signal transduction by neu differentiation factor/neuregulin and epidermal growth factor. Mol Cell Biol. 1996;16(10):5276–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Amin DN, Campbell MR, Moasser MM. The role of HER3, the unpretentious member of the HER family, in cancer biology and cancer therapeutics. Semin Cell Dev Biol. 2010;21(9):944–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gala K, Chandarlapaty S. Molecular pathways: HER3 targeted therapy. Clin Cancer Res. 2014;20(6):1410–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Engelman JA et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 2007;316(5827):1039–43.

    Article  CAS  PubMed  Google Scholar 

  9. Momeny M et al. Heregulin-HER3-HER2 signaling promotes matrix metalloproteinase-dependent blood-brain-barrier transendothelial migration of human breast cancer cell lines. Oncotarget. 2015;6(6):3932–46.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Berchuck A et al. Overexpression of HER-2/neu is associated with poor survival in advanced epithelial ovarian cancer. Cancer Res. 1990;50(13):4087–91.

    CAS  PubMed  Google Scholar 

  11. Tanner B et al. ErbB-3 predicts survival in ovarian cancer. J Clin Oncol. 2006;24(26):4317–23.

    Article  CAS  PubMed  Google Scholar 

  12. Pradeep S et al. Hematogenous metastasis of ovarian cancer: rethinking mode of spread. Cancer Cell. 2014;26(1):77–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Momeny M et al. Silibinin inhibits invasive properties of human glioblastoma U87MG cells through suppression of cathepsin B and nuclear factor kappa B-mediated induction of matrix metalloproteinase 9. Anticancer Drugs. 2010;21(3):252–60.

    Article  CAS  PubMed  Google Scholar 

  14. Tyagi A et al. Silibinin causes cell cycle arrest and apoptosis in human bladder transitional cell carcinoma cells by regulating CDKI-CDK-cyclin cascade, and caspase 3 and PARP cleavages. Carcinogenesis. 2004;25(9):1711–20.

    Article  CAS  PubMed  Google Scholar 

  15. Kumar S et al. Silibinin strongly inhibits the growth kinetics of colon cancer stem cell-enriched spheroids by modulating interleukin 4/6-mediated survival signals. Oncotarget. 2014;5(13):4972–89.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chu SC et al. Silibinin inhibits the invasion of human lung cancer cells via decreased productions of urokinase-plasminogen activator and matrix metalloproteinase-2. Mol Carcinog. 2004;40(3):143–9.

    Article  CAS  PubMed  Google Scholar 

  17. Zhou L et al. Silibinin restores paclitaxel sensitivity to paclitaxel-resistant human ovarian carcinoma cells. Anticancer Res. 2008;28(2A):1119–27.

    CAS  PubMed  Google Scholar 

  18. Nambiar DK, et al. Silibinin inhibits aberrant lipid metabolism, proliferation and emergence of androgen-independence in prostate cancer cells via primarily targeting the sterol response element binding protein 1. Oncotarget. 2014.

  19. Momeny M et al. Effects of silibinin on cell growth and invasive properties of a human hepatocellular carcinoma cell line, HepG-2, through inhibition of extracellular signal-regulated kinase 1/2 phosphorylation. Eur J Pharmacol. 2008;591(1-3):13–20.

    Article  CAS  PubMed  Google Scholar 

  20. Hsieh YS et al. Silibinin suppresses human osteosarcoma MG-63 cell invasion by inhibiting the ERK-dependent c-Jun/AP-1 induction of MMP-2. Carcinogenesis. 2007;28(5):977–87.

    Article  CAS  PubMed  Google Scholar 

  21. Deep G, Agarwal R. Antimetastatic efficacy of silibinin: molecular mechanisms and therapeutic potential against cancer. Cancer Metastasis Rev. 2010;29(3):447–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sheng Q et al. An activated ErbB3/NRG1 autocrine loop supports in vivo proliferation in ovarian cancer cells. Cancer Cell. 2010;17(3):298–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Smith JA et al. An evaluation of cytotoxicity of the taxane and platinum agents combination treatment in a panel of human ovarian carcinoma cell lines. Gynecol Oncol. 2005;98(1):141–5.

    Article  CAS  PubMed  Google Scholar 

  24. Franken NA et al. Clonogenic assay of cells in vitro. Nat Protoc. 2006;1(5):2315–9.

    Article  CAS  PubMed  Google Scholar 

  25. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3(6):1101–8.

    Article  CAS  PubMed  Google Scholar 

  26. Gilmour LM et al. Neuregulin expression, function, and signaling in human ovarian cancer cells. Clin Cancer Res. 2002;8(12):3933–42.

    CAS  PubMed  Google Scholar 

  27. Breuleux M. Role of heregulin in human cancer. Cell Mol Life Sci. 2007;64(18):2358–77.

    Article  CAS  PubMed  Google Scholar 

  28. Weiss FU et al. Distinct characteristics of heregulin signals mediated by HER3 or HER4. J Cell Physiol. 1997;173(2):187–95.

    Article  CAS  PubMed  Google Scholar 

  29. Bezler M, Hengstler JG, Ullrich A. Inhibition of doxorubicin-induced HER3-PI3K-AKT signalling enhances apoptosis of ovarian cancer cells. Mol Oncol. 2012;6(5):516–29.

    Article  CAS  PubMed  Google Scholar 

  30. van der Horst EH, Weber I, Ullrich A. Tyrosine phosphorylation of PYK2 mediates heregulin-induced glioma invasion: novel heregulin/HER3-stimulated signaling pathway in glioma. Int J Cancer. 2005;113(5):689–98.

    Article  CAS  PubMed  Google Scholar 

  31. Shin I et al. PKB/Akt mediates cell-cycle progression by phosphorylation of p27(Kip1) at threonine 157 and modulation of its cellular localization. Nat Med. 2002;8(10):1145–52.

    Article  CAS  PubMed  Google Scholar 

  32. Gao N et al. G1 cell cycle progression and the expression of G1 cyclins are regulated by PI3K/AKT/mTOR/p70S6K1 signaling in human ovarian cancer cells. Am J Physiol Cell Physiol. 2004;287(2):C281–91.

    Article  CAS  PubMed  Google Scholar 

  33. Xing H et al. Activation of fibronectin/PI-3K/Akt2 leads to chemoresistance to docetaxel by regulating survivin protein expression in ovarian and breast cancer cells. Cancer Lett. 2008;261(1):108–19.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang HY, Zhang PN, Sun H. Aberration of the PI3K/AKT/mTOR signaling in epithelial ovarian cancer and its implication in cisplatin-based chemotherapy. Eur J Obstet Gynecol Reprod Biol. 2009;146(1):81–6.

    Article  CAS  PubMed  Google Scholar 

  35. Tran H et al. The many forks in FOXO’s road. Sci STKE. 2003;2003(172):RE5.

    PubMed  Google Scholar 

  36. Daly C et al. Angiopoietin-1 modulates endothelial cell function and gene expression via the transcription factor FKHR (FOXO1). Genes Dev. 2004;18(9):1060–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Brunet A et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell. 1999;96(6):857–68.

    Article  CAS  PubMed  Google Scholar 

  38. Mohamed MM, Sloane BF. Cysteine cathepsins: multifunctional enzymes in cancer. Nat Rev Cancer. 2006;6(10):764–75.

    Article  CAS  PubMed  Google Scholar 

  39. Kozyreva EA et al. Prognostic significance of determining cathepsin B activity in malignant ovarian tumors. Vopr Med Khim. 1994;40(1):25–7.

    CAS  PubMed  Google Scholar 

  40. Warwas M et al. Cathepsin B-like activity as a serum tumour marker in ovarian carcinoma. Eur J Clin Chem Clin Biochem. 1997;35(4):301–4.

    CAS  PubMed  Google Scholar 

  41. Nishikawa H et al. The role of cathepsin B and cystatin C in the mechanisms of invasion by ovarian cancer. Gynecol Oncol. 2004;92(3):881–6.

    Article  CAS  PubMed  Google Scholar 

  42. Steffan JJ et al. Na+/H+ exchangers and RhoA regulate acidic extracellular pH-induced lysosome trafficking in prostate cancer cells. Traffic. 2009;10(6):737–53.

    Article  CAS  PubMed  Google Scholar 

  43. Sheng Q, Liu J. The therapeutic potential of targeting the EGFR family in epithelial ovarian cancer. Br J Cancer. 2011;104(8):1241–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lafky JM et al. Clinical implications of the ErbB/epidermal growth factor (EGF) receptor family and its ligands in ovarian cancer. Biochim Biophys Acta. 2008;1785(2):232–65.

    CAS  PubMed  Google Scholar 

  45. Lee CH et al. Assessment of Her-1, Her-2, And Her-3 expression and Her-2 amplification in advanced stage ovarian carcinoma. Int J Gynecol Pathol. 2005;24(2):147–52.

    Article  PubMed  Google Scholar 

  46. Secord AA et al. Phase II trial of cetuximab and carboplatin in relapsed platinum-sensitive ovarian cancer and evaluation of epidermal growth factor receptor expression: a Gynecologic Oncology Group study. Gynecol Oncol. 2008;108(3):493–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schilder RJ et al. Phase II study of gefitinib in patients with relapsed or persistent ovarian or primary peritoneal carcinoma and evaluation of epidermal growth factor receptor mutations and immunohistochemical expression: a Gynecologic Oncology Group study. Clin Cancer Res. 2005;11(15):5539–48.

    Article  CAS  PubMed  Google Scholar 

  48. Vergote IB et al. Randomized phase III study of erlotinib versus observation in patients with no evidence of disease progression after first-line platin-based chemotherapy for ovarian carcinoma: a European Organisation for Research and Treatment of Cancer-Gynaecological Cancer Group, and Gynecologic Cancer Intergroup study. J Clin Oncol. 2014;32(4):320–6.

    Article  CAS  PubMed  Google Scholar 

  49. Meden H et al. Overexpression of the oncogene c-erb B2 in primary ovarian cancer: evaluation of the prognostic value in a Cox proportional hazards multiple regression. Int J Gynecol Pathol. 1994;13(1):45–53.

    Article  CAS  PubMed  Google Scholar 

  50. Slamon DJ et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science. 1989;244(4905):707–12.

    Article  CAS  PubMed  Google Scholar 

  51. Tuefferd M et al. HER2 status in ovarian carcinomas: a multicenter GINECO study of 320 patients. PLoS One. 2007;2(11):e1138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xu F et al. The outcome of heregulin-induced activation of ovarian cancer cells depends on the relative levels of HER-2 and HER-3 expression. Clin Cancer Res. 1999;5(11):3653–60.

    CAS  PubMed  Google Scholar 

  53. Ueno NT et al. E1A-mediated paclitaxel sensitization in HER-2/neu-overexpressing ovarian cancer SKOV3.ip1 through apoptosis involving the caspase-3 pathway. Clin Cancer Res. 2000;6(1):250–9.

    CAS  PubMed  Google Scholar 

  54. Bookman MA et al. Evaluation of monoclonal humanized anti-HER2 antibody, trastuzumab, in patients with recurrent or refractory ovarian or primary peritoneal carcinoma with overexpression of HER2: a phase II trial of the Gynecologic Oncology Group. J Clin Oncol. 2003;21(2):283–90.

    Article  CAS  PubMed  Google Scholar 

  55. Gordon MS et al. Clinical activity of pertuzumab (rhuMAb 2C4), a HER dimerization inhibitor, in advanced ovarian cancer: potential predictive relationship with tumor HER2 activation status. J Clin Oncol. 2006;24(26):4324–32.

    Article  CAS  PubMed  Google Scholar 

  56. Banerjee S, Kaye SB. New strategies in the treatment of ovarian cancer: current clinical perspectives and future potential. Clin Cancer Res. 2013;19(5):961–8.

    Article  CAS  PubMed  Google Scholar 

  57. Shen K, Lang J, Guo L. Overexpression of C-erbB3 in transitional cell carcinoma of the ovary. Zhonghua Fu Chan Ke Za Zhi. 1995;30(11):658–61.

    CAS  PubMed  Google Scholar 

  58. Leng J et al. Overexpression of p53, EGFR, c-erbB2 and c-erbB3 in endometrioid carcinoma of the ovary. Chin Med Sci J. 1997;12(2):67–70.

    CAS  PubMed  Google Scholar 

  59. Tsuda H et al. Identification of DNA copy number changes in microdissected serous ovarian cancer tissue using a cDNA microarray platform. Cancer Genet Cytogenet. 2004;155(2):97–107.

    Article  CAS  PubMed  Google Scholar 

  60. Davies S et al. High incidence of ErbB3, ErbB4, and MET expression in ovarian cancer. Int J Gynecol Pathol. 2014;33(4):402–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ocana A et al. HER3 overexpression and survival in solid tumors: a meta-analysis. J Natl Cancer Inst. 2013;105(4):266–73.

    Article  CAS  PubMed  Google Scholar 

  62. Campbell MR, Amin D, Moasser MM. HER3 comes of age: new insights into its functions and role in signaling, tumor biology, and cancer therapy. Clin Cancer Res. 2010;16(5):1373–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Shayesteh L et al. PIK3CA is implicated as an oncogene in ovarian cancer. Nat Genet. 1999;21(1):99–102.

    Article  CAS  PubMed  Google Scholar 

  64. Meng Q et al. Role of PI3K and AKT specific isoforms in ovarian cancer cell migration, invasion and proliferation through the p70S6K1 pathway. Cell Signal. 2006;18(12):2262–71.

    Article  CAS  PubMed  Google Scholar 

  65. Page C et al. Overexpression of Akt/AKT can modulate chemotherapy-induced apoptosis. Anticancer Res. 2000;20(1A):407–16.

    CAS  PubMed  Google Scholar 

  66. Hu L et al. Inhibition of phosphatidylinositol 3'-kinase increases efficacy of paclitaxel in in vitro and in vivo ovarian cancer models. Cancer Res. 2002;62(4):1087–92.

    CAS  PubMed  Google Scholar 

  67. Sui L et al. Survivin expression and its correlation with cell proliferation and prognosis in epithelial ovarian tumors. Int J Oncol. 2002;21(2):315–20.

    CAS  PubMed  Google Scholar 

  68. Takai N et al. Expression of survivin is associated with malignant potential in epithelial ovarian carcinoma. Int J Mol Med. 2002;10(2):211–6.

    CAS  PubMed  Google Scholar 

  69. Xing J et al. Effect of shRNA targeting survivin on ovarian cancer. J Cancer Res Clin Oncol. 2012;138(7):1221–9.

    Article  CAS  PubMed  Google Scholar 

  70. Chakrabarty A et al. Trastuzumab-resistant cells rely on a HER2-PI3K-FoxO-survivin axis and are sensitive to PI3K inhibitors. Cancer Res. 2013;73(3):1190–200.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed H. Ghaffari.

Ethics declarations

Conflicts of interest

None

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Effects of HER2 and HER3-targeted therapies on proliferation of EOC cells. A BrdU proliferation assay was conducted to investigate the anti-proliferative effects of trastuzumab (20 μg/mL) and H3.105.5 (20 μg/mL) on OVCAR8 and SKOV3 cells over 72 h of treatment. Data are given as mean ± SD. Statistically significant values of *p < 0.05, **p < 0.01 and, ***p < 0.001 were determined compared with the control. (JPEG 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Momeny, M., Ghasemi, R., Valenti, G. et al. Effects of silibinin on growth and invasive properties of human ovarian carcinoma cells through suppression of heregulin/HER3 pathway. Tumor Biol. 37, 3913–3923 (2016). https://doi.org/10.1007/s13277-015-4220-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4220-6

Keywords

Navigation