Skip to main content

Advertisement

Log in

Radiofrequency ablation-increased CXCL10 is associated with earlier recurrence of hepatocellular carcinoma by promoting stemness

  • Original Article
  • Published:
Tumor Biology

Abstract

Radiofrequency ablation (RFA) represents a valuable choice in hepatocellular carcinoma (HCC); however, local recurrence of HCC is common after RFA. Here, 20 primary HCC patients treated by RFA were enrolled. Before (termed 0d) and after RFA treatment for 1 and 7 days (termed 1d and 7d, respectively), plasma and noncancerous tissue were collected. ELISA assay showed that plasma C-X-C motif chemokine 10 (CXCL10) was increased in ten patients (type I patients) but decreased in the other 10 patients (type II patients). The mean interval for HCC recurrence in type I patients was less than the mean interval in type II patients. Interestingly, a significant negative correlation between interval for HCC recurrence and fold change of plasma CXCL10 (1d/0d or 7d/0d) was identified, suggesting that RFA-induced CXCL10 is associated with earlier HCC recurrence. Immunofluorescence assay showed that the receptor of CXCL10, chemokine (C-X-C motif) receptor 3 (CXCR3), was significantly increased in type I, but not type II, patients after RFA. In vitro assay demonstrated that CXCL10 stimulus increased the rate of CD133+ cancer stem cells (CSCs) in HepG2 cells by binding to CXCR3 and then inducing c-Myc expression. Many studies have reported that induction of CD133+ CSCs contributes to HCC recurrence. Thus, CXCL10-increased CD133+ CSCs by activating CXCR3/c-Myc pathway might accelerate HCC recurrence after RFA. These data might have potential implications for HCC therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CSCs:

Cancer stem cells

CXCL10:

C-X-C motif chemokine 10

CXCR3:

Chemokine (C-X-C motif) receptor 3

HCC:

Hepatocellular carcinoma

MSCs:

Mesenchymal stem cells

RFA:

Radiofrequency ablation

References

  1. El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007;132:2557–76.

    Article  CAS  PubMed  Google Scholar 

  2. Park EK, Kim HJ, Kim CY, Hur YH, Koh YS, Kim JC, et al. A comparison between surgical resection and radiofrequency ablation in the treatment of hepatocellular carcinoma. Ann Surg Treat Res. 2014;87:72–80.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Nguyen LV, Vanner R, Dirks P, Eaves CJ. Cancer stem cells: an evolving concept. Nat Rev Cancer. 2012;12:133–43.

    CAS  PubMed  Google Scholar 

  4. Ma S, Chan KW, Hu L, Lee TK, Wo JY, Ng IO, et al. Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology. 2007;132:2542–56.

    Article  CAS  PubMed  Google Scholar 

  5. Ma S, Lee TK, Zheng BJ, Chan KW, Guan XY. CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene. 2008;27:1749–58.

    Article  CAS  PubMed  Google Scholar 

  6. Wilson GS, Hu Z, Duan W, Tian A, Wang XM, McLeod D, et al. Efficacy of using cancer stem cell markers in isolating and characterizing liver cancer stem cells. Stem Cells Dev. 2013;22:2655–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lee TK, Cheung VC, Ng IO. Liver tumor-initiating cells as a therapeutic target for hepatocellular carcinoma. Cancer Lett. 2013;338:101–09.

    Article  CAS  PubMed  Google Scholar 

  8. Sun YF, Xu Y, Yang XR, Guo W, Zhang X, Qiu SJ, et al. Circulating stem cell-like epithelial cell adhesion molecule-positive tumor cells indicate poor prognosis of hepatocellular carcinoma after curative resection. Hepatology. 2013;57:1458–68.

    Article  CAS  PubMed  Google Scholar 

  9. Charles ED, Dustin LB. Chemokine antagonism in chronic hepatitis C virus infection. J Clin Invest. 2011;121:25–7.

    Article  CAS  PubMed  Google Scholar 

  10. Liu M, Guo S, Stiles JK. The emerging role of CXCL10 in cancer (review). Oncol Lett. 2011;2:583–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Strieter RM, Burdick MD, Mestas J, Gomperts B, Keane MP, Belperio JA. Cancer CXC chemokine networks and tumour angiogenesis. Eur J Cancer. 2006;42:768–78.

    Article  CAS  PubMed  Google Scholar 

  12. Shi M, Guo RP, Zhang CQ, Zhong C, Lin XJ, Li JQ. Expression of CXCR3 in hepatocellular carcinoma. Ai Zheng. 2006;25:1232–37.

    CAS  PubMed  Google Scholar 

  13. Liu K, Zhang Y, Hu S, Yu Y, Yang Q, Jin D, et al. Increased levels of BAFF and APRIL related to human active pulmonary tuberculosis. Plos One. 2012;7, e38429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu K, Shi Y, Guo X, Wang S, Ouyang Y, Hao M, et al. CHOP mediates ASPP2-induced autophagic apoptosis in hepatoma cells by releasing Beclin-1 from Bcl-2 and inducing nuclear translocation of Bcl-2. Cell Death Dis. 2014;5, e1323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cao L, Zhou Y, Zhai B, Liao J, Xu W, Zhang R, et al. Sphere-forming cell subpopulations with cancer stem cell properties in human hepatoma cell lines. BMC Gastroenterol. 2011;11:71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Magee JA, Piskounova E, Morrison SJ. Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell. 2012;21:283–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang J, Wang H, Li Z, Wu Q, Lathia JD, McLendon RE, et al. C-Myc is required for maintenance of glioma cancer stem cells. Plos One. 2008;3, e3769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee EY, Lee ZH, Song YW. CXCL10 and autoimmune diseases. Autoimmun Rev. 2009;8:379–83.

    Article  CAS  PubMed  Google Scholar 

  19. Kanda N, Shimizu T, Tada Y, Watanabe S. IL-18 enhances IFN-gamma-induced production of CXCL9, CXCL10, and CXCL11 in human keratinocytes. Eur J Immunol. 2007;37:338–50.

    Article  CAS  PubMed  Google Scholar 

  20. Kanda N, Watanabe S. Prolactin enhances interferon-gamma-induced production of CXC ligand 9 (CXCL9), CXCL10, and CXCL11 in human keratinocytes. Endocrinology. 2007;148:2317–25.

    Article  CAS  PubMed  Google Scholar 

  21. Mee JB, Johnson CM, Morar N, Burslem F, Groves RW. The psoriatic transcriptome closely resembles that induced by interleukin-1 in cultured keratinocytes: dominance of innate immune responses in psoriasis. Am J Pathol. 2007;171:32–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brownell J, Polyak SJ. Molecular pathways: hepatitis C virus, CXCL10, and the inflammatory road to liver cancer. Clin Cancer Res. 2013;19:1347–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ling CC, Ng KT, Shao Y, Geng W, Xiao JW, Liu H, et al. Post-transplant endothelial progenitor cell mobilization via CXCL10/CXCR3 signaling promotes liver tumor growth. J Hepatol. 2014;60:103–09.

    Article  CAS  PubMed  Google Scholar 

  24. Chaturvedi P, Gilkes DM, Wong CC, Luo W, Zhang H, Wei H, et al. Hypoxia-inducible factor-dependent breast cancer-mesenchymal stem cell bidirectional signaling promotes metastasis. J Clin Invest. 2013;123:189–205.

    Article  CAS  PubMed  Google Scholar 

  25. Donega V, Nijboer CH, Braccioli L, Slaper-Cortenbach I, Kavelaars A, van Bel F, et al. Intranasal administration of human MSC for ischemic brain injury in the mouse: in vitro and in vivo neuroregenerative functions. Plos One. 2014;9, e112339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chaturvedi P, Gilkes DM, Takano N, Semenza GL. Hypoxia-inducible factor-dependent signaling between triple-negative breast cancer cells and mesenchymal stem cells promotes macrophage recruitment. Proc Natl Acad Sci U S A. 2014;111:E2120–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Maru SV, Holloway KA, Flynn G, Lancashire CL, Loughlin AJ, Male DK, et al. Chemokine production and chemokine receptor expression by human glioma cells: role of CXCL10 in tumour cell proliferation. J Neuroimmunol. 2008;199:35–45.

    Article  CAS  PubMed  Google Scholar 

  28. Lo BK, Yu M, Zloty D, Cowan B, Shapiro J, McElwee KJ. CXCR3/ligands are significantly involved in the tumorigenesis of basal cell carcinomas. Am J Pathol. 2010;176:2435–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Giuliani N, Bonomini S, Romagnani P, Lazzaretti M, Morandi F, Colla S, et al. CXCR3 and its binding chemokines in myeloma cells: expression of isoforms and potential relationships with myeloma cell proliferation and survival. Haematologica. 2006;91:1489–97.

    CAS  PubMed  Google Scholar 

  30. Li Y, Reader JC, Ma X, Kundu N, Kochel T, Fulton AM. (2014) Divergent roles of CXCR3 isoforms in promoting cancer stem-like cell survival and metastasis. Breast Cancer Res Treat.

  31. Murphy MJ, Wilson A, Trumpp A. More than just proliferation: Myc function in stem cells. Trends Cell Biol. 2005;15:128–37.

    Article  CAS  PubMed  Google Scholar 

  32. Wong DJ, Liu H, Ridky TW, Cassarino D, Segal E, Chang HY. Module map of stem cell genes guides creation of epithelial cancer stem cells. Cell Stem Cell. 2008;2:333–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (812111545), the Twelfth Key Science and Technology Five-Year Plan of China (2012ZX10001-002, 2012ZX10001-003, and 2012ZX10001-004), the National Key Technology Support Program of China (2012BAI15B08), the Capital Health Research and Development Special (2014-1-1151), and the Project of Construction of Innovative Teams and Teacher Career Development for Universities and Colleges Under Beijing Municipality (IDHT20150502).

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiasheng Zheng or Dexi Chen.

Additional information

Yabo Ouyang and Kai Liu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouyang, Y., Liu, K., Hao, M. et al. Radiofrequency ablation-increased CXCL10 is associated with earlier recurrence of hepatocellular carcinoma by promoting stemness. Tumor Biol. 37, 3697–3704 (2016). https://doi.org/10.1007/s13277-015-4035-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4035-5

Keywords

Navigation