Skip to main content

Advertisement

Log in

Prognostic values of Notch receptors in breast cancer

  • Original Article
  • Published:
Tumor Biology

Abstract

Notch receptors are frequently deregulated in several human malignancies including human breast cancer. Activation of Notch has been reported to cause mammary carcinomas in mice. However, the prognostic value of individual Notch receptors in breast cancer (BC) patients remains elusive. In the current study, we investigated the prognostic value of Notch receptors in human BC patients. More specifically, we investigated the prognostic value of four Notch receptors in breast cancer patients through “the Kaplan-Meier plotter” (KM plotter) database, in which updated gene expression data and survival information are from a total of 3554 breast cancer patients. Our results showed that Notch1 messenger RNA (mRNA) high expression was correlated to worsen overall survival (OS) in PgR-negative BC patients. Notch2, Notch3, and Notch4 mRNA high expressions were found to be correlated to better OS for all breast cancer patients. Notch2 was also found to be correlated to better OS in lymph node-negative breast cancer patients and HER2-positive breast cancer patients. These results will be useful for better understanding of the heterogeneity and complexity in the molecular biology of breast cancer and for developing tools to more accurately predict their prognosis and design their customized treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63:11–30.

    Article  PubMed  Google Scholar 

  2. Redig AJ, McAllister SS. Breast cancer as a systemic disease: a view of metastasis. J Intern Med. 2013;274:113–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Coleman RE, Gregory W, Marshall H, Wilson C, Holen I. The metastatic microenvironment of breast cancer: clinical implications. Breast. 2013;22 Suppl 2:S50–6.

    Article  PubMed  Google Scholar 

  4. Korkaya H, Wicha MS. HER-2, notch, and breast cancer stem cells: targeting an axis of evil. Clin Cancer Res. 2009;15:1845–7.

    Article  CAS  PubMed  Google Scholar 

  5. Wang Z, Li Y, Ahmad A, Azmi AS, Banerjee S, et al. Targeting Notch signaling pathway to overcome drug resistance for cancer therapy. Biochim Biophys Acta. 2010;1806(2):258–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lewis J. Notch signalling and the control of cell fate choices in vertebrates. Semin Cell Dev Biol. 1998;9:583–9.

    Article  CAS  PubMed  Google Scholar 

  7. Simpson P. Developmental genetics. The Notch connection. Nature. 1995;375:736–7.

    Article  CAS  PubMed  Google Scholar 

  8. Borggrefe T, Oswald F. The Notch signaling pathway: transcriptional regulation at Notch target genes. Cell Mol Life Sci. 2009;66:1631–46.

    Article  CAS  PubMed  Google Scholar 

  9. Kopan R, Ilagan MX. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell. 2009;137:216–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Miele L. Notch signaling. Clin Cancer Res. 2006;12:1074–9.

    Article  CAS  PubMed  Google Scholar 

  11. Miele L, Miao H, Nickoloff BJ. NOTCH signaling as a novel cancer therapeutic target. Curr Cancer Drug Targets. 2006;6:313–23.

    Article  CAS  PubMed  Google Scholar 

  12. Callahan R, Raafat A. Notch signaling in mammary gland tumorigenesis. J Mammary Gland Biol Neoplasia. 2001;6:23–36.

    Article  CAS  PubMed  Google Scholar 

  13. Dievart A, Beaulieu N, Jolicoeur P. Involvement of Notch1 in the development of mouse mammary tumors. Oncogene. 1999;18:5973–81.

    Article  CAS  PubMed  Google Scholar 

  14. Kiaris H, Politi K, Grimm LM, Szabolcs M, Fisher P, et al. Modulation of notch signaling elicits signature tumors and inhibits hras1-induced oncogenesis in the mouse mammary epithelium. Am J Pathol. 2004;165:695–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pece S, Serresi M, Santolini E, Capra M, Hulleman E, et al. Loss of negative regulation by Numb over Notch is relevant to human breast carcinogenesis. J Cell Biol. 2004;167:215–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, et al. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat. 2010;123:725–31.

    Article  PubMed  Google Scholar 

  17. Gyorffy B, Surowiak P, Budczies J, Lanczky A. Online survival analysis software to assess the prognostic value of biomarkers using transcriptomic data in non-small-cell lung cancer. PLos One. 2013;8:e82241.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gyorffy B, Lanczky A, Szallasi Z. Implementing an online tool for genome-wide validation of survival-associated biomarkers in ovarian-cancer using microarray data from 1287 patients. Endocr Relat Cancer. 2012;19:197–208.

    Article  CAS  PubMed  Google Scholar 

  19. Gyorffy B, Benke Z, Lanczky A, Balazs B, Szallasi Z, et al. RecurrenceOnline: an online analysis tool to determine breast cancer recurrence and hormone receptor status using microarray data. Breast Cancer Res Treat. 2012;132:1025–34.

    Article  CAS  PubMed  Google Scholar 

  20. Liu M, Wang G, Gomez-Fernandez CR, Guo S. GREB1 functions as a growth promoter and is modulated by IL6/STAT3 in breast cancer. PLos One. 2012;7:e46410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tilghman SL, Townley I, Zhong Q, Carriere PP, Zou J, et al. Proteomic signatures of acquired letrozole resistance in breast cancer: suppressed estrogen signaling and increased cell motility and invasiveness. Mol Cell Proteomics. 2013;12:2440–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhou C, Zhong Q, Rhodes LV, Townley I, Bratton MR, et al. Proteomic analysis of acquired tamoxifen resistance in MCF-7 cells reveals expression signatures associated with enhanced migration. Breast Cancer Res. 2012;14:R45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Maciejczyk A, Szelachowska J, Czapiga B, Matkowski R, Halon A, et al. Elevated BUBR1 expression is associated with poor survival in early breast cancer patients: 15-year follow-up analysis. J Histochem Cytochem. 2013;61:330–9.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Maciejczyk A, Lacko A, Ekiert M, Jagoda E, Wysocka T, et al. Elevated nuclear S100P expression is associated with poor survival in early breast cancer patients. Histol Histopathol. 2013;28:513–24.

    PubMed  Google Scholar 

  25. Maciejczyk A, Jagoda E, Wysocka T, Matkowski R, Gyorffy B, et al. ABCC2 (MRP2, cMOAT) localized in the nuclear envelope of breast carcinoma cells correlates with poor clinical outcome. Pathol Oncol Res. 2012;18:331–42.

    Article  CAS  PubMed  Google Scholar 

  26. Adam MA. New prognostic factors in breast cancer. Adv Clin Exp Med. 2013;22:5–15.

    Google Scholar 

  27. Stylianou S, Clarke RB, Brennan K. Aberrant activation of notch signaling in human breast cancer. Cancer Res. 2006;66:1517–25.

    Article  CAS  PubMed  Google Scholar 

  28. Girard L, Hanna Z, Beaulieu N, Hoemann CD, Simard C, et al. Frequent provirus insertional mutagenesis of Notch1 in thymomas of MMTVD/myc transgenic mice suggests a collaboration of c-myc and Notch1 for oncogenesis. Genes Dev. 1996;10:1930–44.

    Article  CAS  PubMed  Google Scholar 

  29. Ling H, Sylvestre JR, Jolicoeur P. Notch1-induced mammary tumor development is cyclin D1-dependent and correlates with expansion of pre-malignant multipotent duct-limited progenitors. Oncogene. 2010;29(32):4543–54.

    Article  CAS  PubMed  Google Scholar 

  30. Parr C, Watkins G, Jiang WG. The possible correlation of Notch-1 and Notch-2 with clinical outcome and tumour clinicopathological parameters in human breast cancer. Int J Mol Med. 2004;14:779–86.

    CAS  PubMed  Google Scholar 

  31. Raouf A, Zhao Y, To K, Stingl J, Delaney A, et al. Transcriptome analysis of the normal human mammary cell commitment and differentiation process. Cell Stem Cell. 2008;3:109–18.

    Article  CAS  PubMed  Google Scholar 

  32. Hua BL, Fu XG, Hu WH, Yin L, Kang XL, et al. Notch1 mRNA and protein expression in human breast cancer and normal mammary gland tissues. Zhonghua Bing Li Xue Za Zhi. 2009;38:806–9.

    CAS  PubMed  Google Scholar 

  33. Guo S, Liu M, Gonzalez-Perez RR. Role of Notch and its oncogenic signaling crosstalk in breast cancer. Biochim Biophys Acta. 2011;1815:197–213.

    CAS  PubMed  Google Scholar 

  34. O’Neill CF, Urs S, Cinelli C, Lincoln A, Nadeau RJ, et al. Notch2 signaling induces apoptosis and inhibits human MDA-MB-231 xenograft growth. Am J Pathol. 2007;171:1023–36.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hu C, Dievart A, Lupien M, Calvo E, Tremblay G, et al. Overexpression of activated murine Notch1 and Notch3 in transgenic mice blocks mammary gland development and induces mammary tumors. Am J Pathol. 2006;168:973–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yamaguchi N, Oyama T, Ito E, Satoh H, Azuma S, et al. NOTCH3 signaling pathway plays crucial roles in the proliferation of ErbB2-negative human breast cancer cells. Cancer Res. 2008;68:1881–8.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang Z, Wang H, Ikeda S, Fahey F, Bielenberg D, et al. Notch3 in human breast cancer cell lines regulates osteoblast-cancer cell interactions and osteolytic bone metastasis. Am J Pathol. 2010;177(3):1459–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gallahan D, Jhappan C, Robinson G, Hennighausen L, Sharp R, et al. Expression of a truncated Int3 gene in developing secretory mammary epithelium specifically retards lobular differentiation resulting in tumorigenesis. Cancer Res. 1996;56:1775–85.

    CAS  PubMed  Google Scholar 

  39. Jhappan C, Gallahan D, Stahle C, Chu E, Smith GH, et al. Expression of an activated Notch-related int-3 transgene interferes with cell differentiation and induces neoplastic transformation in mammary and salivary glands. Genes Dev. 1992;6:345–55.

    Article  CAS  PubMed  Google Scholar 

  40. Imatani A, Callahan R. Identification of a novel NOTCH-4/INT-3 RNA species encoding an activated gene product in certain human tumor cell lines. Oncogene. 2000;19:223–31.

    Article  CAS  PubMed  Google Scholar 

  41. Soriano JV, Uyttendaele H, Kitajewski J, Montesano R. Expression of an activated Notch4(int-3) oncoprotein disrupts morphogenesis and induces an invasive phenotype in mammary epithelial cells in vitro. Int J Cancer. 2000;86:652–9.

    Article  CAS  PubMed  Google Scholar 

  42. Soares R, Balogh G, Guo S, Gartner F, Russo J, et al. Evidence for the notch signaling pathway on the role of estrogen in angiogenesis. Mol Endocrinol. 2004;18:2333–43.

    Article  CAS  PubMed  Google Scholar 

  43. Calaf GM, Roy D. Cell adhesion proteins altered by 17beta estradiol and parathion in breast epithelial cells. Oncol Rep. 2008;19:165–9.

    CAS  PubMed  Google Scholar 

  44. Clarke CA, Glaser SL, Uratsu CS, Selby JV, Kushi LH, et al. Recent declines in hormone therapy utilization and breast cancer incidence: clinical and population-based evidence. J Clin Oncol. 2006;24:e49–50.

    Article  PubMed  Google Scholar 

  45. Lee S, Kolonel L, Wilkens L, Wan P, Henderson B, et al. Postmenopausal hormone therapy and breast cancer risk: the Multiethnic Cohort. Int J Cancer. 2006;118:1285–91.

    Article  CAS  PubMed  Google Scholar 

  46. Obr AE, Edwards DP. The biology of progesterone receptor in the normal mammary gland and in breast cancer. Mol Cell Endocrinol. 2012;357:4–17.

    Article  CAS  PubMed  Google Scholar 

  47. Hilton HN, Clarke CL. Impact of progesterone on stem/progenitor cells in the human breast. J Mammary Gland Biol Neoplasia. 2015;8:8.

    Google Scholar 

  48. Vares G, Sai S, Wang B, Fujimori A, Nenoi M, et al. Progesterone generates cancer stem cells through membrane progesterone receptor-triggered signaling in basal-like human mammary cells. Cancer Lett. 2015;362:167–73.

    Article  CAS  PubMed  Google Scholar 

  49. Tai W, Mahato R, Cheng K. The role of HER2 in cancer therapy and targeted drug delivery. J Control Release. 2010;146(3):264–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tzahar E, Yarden Y. The ErbB-2/HER2 oncogenic receptor of adenocarcinomas: from orphanhood to multiple stromal ligands. Biochim Biophys Acta. 1998;1377:M25–37.

    CAS  PubMed  Google Scholar 

  51. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science. 1989;244:707–12.

    Article  CAS  PubMed  Google Scholar 

  52. Chen Y, Fischer WH, Gill GN. Regulation of the ERBB-2 promoter by RBPJkappa and NOTCH. J Biol Chem. 1997;272:14110–4.

    Article  CAS  PubMed  Google Scholar 

  53. Magnifico A, Albano L, Campaner S, Delia D, Castiglioni F, et al. Tumor-initiating cells of HER2-positive carcinoma cell lines express the highest oncoprotein levels and are sensitive to trastuzumab. Clin Cancer Res. 2009;15:2010–21.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by the scientific research project of Shanghai Science and Technology Committee (14411950205, 15411967200).

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junming Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Song, F., Jin, T. et al. Prognostic values of Notch receptors in breast cancer. Tumor Biol. 37, 1871–1877 (2016). https://doi.org/10.1007/s13277-015-3961-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3961-6

Keywords

Navigation