Skip to main content

Advertisement

Log in

Clinical and prognostic value of MET gene copy number gain and chromosome 7 polysomy in primary colorectal cancer patients

  • Research Article
  • Published:
Tumor Biology

Abstract

We aimed to explore the clinical and prognostic influence of numeric alterations of MET gene copy number (GCN) and chromosome 7 (CEP7) CN in colorectal cancer (CRC) patients. MET GCN and CEP7 CN were investigated in tissue arrayed tumors from 170 CRC patients using silver in situ hybridization (SISH). MET GCN gain was defined as ≥4 copies of MET, and CEP7 polysomy was prespecified as ≥3 copies of CEP7. Additionally, MET messenger RNA (mRNA) transcription was evaluated using mRNA ISH and compared with MET GCN. MET GCN gain was observed in 14.7 % (25/170), which correlated with advanced stage (P = 0.037), presence of distant metastasis (P = 0.006), and short overall survival (OS) (P = 0.009). In contrast, CEP7 polysomy was found in 6.5 % (11/170), which was related to tumor location in the left colon (P = 0.027) and poor OS (P = 0.029). MET GCN positively correlated with CEP7 CN (R = 0.659, P < 0.001) and mRNA transcription (R = 0.239, P = 0.002). Of note, MET GCN gain and CEP7 polysomy were also associated with poor OS (P = 0.016 and P < 0.001, respectively) in stage II/III CRC patients (n = 123). In multivariate analysis, CEP7 polysomy was an independent prognostic factor for poor OS in all patients (P = 0.009; hazard ratio [HR], 2.220; 95 % confidence interval [CI], 1.233–3.997) and in stage II/III CRC patients (P < 0.001; HR, 20.781; 95 % CI, 4.600–93.882). MET GCN gain and CEP7 polysomy could predict a poor outcome in CRC patients, especially CEP7 polysomy has the most powerful prognostic impact in stage II/III CRC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64(1):9–29. doi:10.3322/caac.21208.

    Article  PubMed  Google Scholar 

  2. Chaput N, Svrcek M, Auperin A, Locher C, Drusch F, Malka D, et al. Tumor-infiltrating CD68+ and CD57+ cells predict patient outcome in stage II-III colorectal cancer. Br J Cancer. 2013;109(4):1013–22. doi:10.1038/bjc.2013.362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hari DM, Leung AM, Lee JH, Sim MS, Vuong B, Chiu CG, et al. AJCC cancer staging manual 7th edition criteria for colon cancer: do the complex modifications improve prognostic assessment? J Am Coll Surg. 2013;217(2):181–90. doi:10.1016/j.jamcollsurg.2013.04.018.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Eder JP, Vande Woude GF, Boerner SA, LoRusso PM. Novel therapeutic inhibitors of the c-Met signaling pathway in cancer. Clin Cancer Res. 2009;15(7):2207–14. doi:10.1158/1078-0432.ccr-08-1306.

    Article  CAS  PubMed  Google Scholar 

  5. Go H, Jeon YK, Park HJ, Sung SW, Seo JW, Chung DH. High MET gene copy number leads to shorter survival in patients with non-small cell lung cancer. J Thorac Oncol. 2010;5(3):305–13. doi:10.1097/JTO.0b013e3181ce3d1d.

    Article  PubMed  Google Scholar 

  6. Peruzzi B, Bottaro DP. Targeting the c-Met signaling pathway in cancer. Clin Cancer Res. 2006;12(12):3657–60. doi:10.1158/1078-0432.ccr-06-0818.

    Article  CAS  PubMed  Google Scholar 

  7. Lee J, Seo JW, Jun HJ, Ki CS, Park SH, Park YS, et al. Impact of MET amplification on gastric cancer: possible roles as a novel prognostic marker and a potential therapeutic target. Oncol Rep. 2011;25(6):1517–24. doi:10.3892/or.2011.1219.

    CAS  PubMed  Google Scholar 

  8. Cappuzzo F, Marchetti A, Skokan M, Rossi E, Gajapathy S, Felicioni L, et al. Increased MET gene copy number negatively affects survival of surgically resected non-small-cell lung cancer patients. J Clin Oncol. 2009;27(10):1667–74. doi:10.1200/jco.2008.19.1635.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Tanaka A, Sueoka-Aragane N, Nakamura T, Takeda Y, Mitsuoka M, Yamasaki F, et al. Co-existence of positive MET FISH status with EGFR mutations signifies poor prognosis in lung adenocarcinoma patients. Lung Cancer. 2012;75(1):89–94. doi:10.1016/j.lungcan.2011.06.004.

    Article  PubMed  Google Scholar 

  10. Jin Y, Sun PL, Kim H, Seo AN, Jheon S, Lee CT, et al. MET gene copy number gain is an independent poor prognostic marker in Korean stage I lung adenocarcinomas. Ann Surg Oncol. 2014;21(2):621–8. doi:10.1245/s10434-013-3355-1.

    Article  PubMed  Google Scholar 

  11. Lee HE, Kim MA, Lee HS, Jung EJ, Yang HK, Lee BL, et al. MET in gastric carcinomas: comparison between protein expression and gene copy number and impact on clinical outcome. Br J Cancer. 2012;107(2):325–33. doi:10.1038/bjc.2012.237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yap TA, Olmos D, Brunetto AT, Tunariu N, Barriuso J, Riisnaes R, et al. Phase I trial of a selective c-MET inhibitor ARQ 197 incorporating proof of mechanism pharmacodynamic studies. J Clin Oncol. 2011;29(10):1271–9. doi:10.1200/jco.2010.31.0367.

    Article  CAS  PubMed  Google Scholar 

  13. Peters S, Adjei AA. MET: a promising anticancer therapeutic target. Nat Rev Clin Oncol. 2012;9(6):314–26. doi:10.1038/nrclinonc.2012.71.

    Article  CAS  PubMed  Google Scholar 

  14. Takeuchi H, Bilchik A, Saha S, Turner R, Wiese D, Tanaka M, et al. c-MET expression level in primary colon cancer: a predictor of tumor invasion and lymph node metastases. Clin Cancer Res. 2003;9(4):1480–8.

    CAS  PubMed  Google Scholar 

  15. Zeng ZS, Weiser MR, Kuntz E, Chen CT, Khan SA, Forslund A, et al. c-Met gene amplification is associated with advanced stage colorectal cancer and liver metastases. Cancer Lett. 2008;265(2):258–69. doi:10.1016/j.canlet.2008.02.049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Edge SB, Byrd DR, Compton C, Fritz A, Greene F, Trotti A. American joint committee on cancer staging manual. American Joint Committee on Cancer Staging Manual. 2010.

  17. Lee HS, Cho SB, Lee HE, Kim MA, Kim JH, Park do J, et al. Protein expression profiling and molecular classification of gastric cancer by the tissue array method. Clin Cancer Res. 2007;13(14):4154–63. doi:10.1158/1078-0432.ccr-07-0173.

    Article  CAS  PubMed  Google Scholar 

  18. Voravud N, Shin DM, Ro JY, Lee JS, Hong WK, Hittelman WN. Increased polysomies of chromosomes 7 and 17 during head and neck multistage tumorigenesis. Cancer Res. 1993;53(12):2874–83.

    CAS  PubMed  Google Scholar 

  19. Ha SY, Lee J, Kang SY, Do IG, Ahn S, Park JO, et al. MET overexpression assessed by new interpretation method predicts gene amplification and poor survival in advanced gastric carcinomas. Mod Pathol. 2013. doi:10.1038/modpathol.2013.108.

    PubMed  Google Scholar 

  20. Wang F, Flanagan J, Su N, Wang LC, Bui S, Nielson A, et al. RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J Mol Diagn. 2012;14(1):22–9. doi:10.1016/j.jmoldx.2011.08.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim MA, Jung JE, Lee HE, Yang HK, Kim WH. In situ analysis of HER2 mRNA in gastric carcinoma: comparison with fluorescence in situ hybridization, dual-color silver in situ hybridization, and immunohistochemistry. Hum Pathol. 2013;44(4):487–94. doi:10.1016/j.humpath.2012.06.022.

    Article  CAS  PubMed  Google Scholar 

  22. Choi J, Lee HE, Kim MA, Jang BG, Lee HS, Kim WH. Analysis of MET mRNA expression in gastric cancers using RNA in situ hybridization assay: its clinical implication and comparison with immunohistochemistry and silver in situ hybridization. PLoS One. 2014;9(11), e111658. doi:10.1371/journal.pone.0111658.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Oh JR, Kim DW, Lee HS, Lee HE, Lee SM, Jang JH, et al. Microsatellite instability testing in Korean patients with colorectal cancer. Fam Cancer. 2012;11(3):459–66. doi:10.1007/s10689-012-9536-4.

    Article  CAS  PubMed  Google Scholar 

  24. Kim JH, Bae JM, Kim KJ, Rhee YY, Kim Y, Cho NY, et al. Differential features of microsatellite-unstable colorectal carcinomas depending on EPCAM expression status. Korean J Pathol. 2014;48(4):276–82. doi:10.4132/KoreanJPathol.2014.48.4.276.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Seo AN, Kwak Y, Kim DW, Kang SB, Choe G, Kim WH, et al. HER2 status in colorectal cancer: its clinical significance and the relationship between HER2 gene amplification and expression. PLoS One. 2014;9(5), e98528. doi:10.1371/journal.pone.0098528.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Guo B, Cen H, Tan X, Liu W, Ke Q. Prognostic value of MET gene copy number and protein expression in patients with surgically resected non-small cell lung cancer: a meta-analysis of published literatures. PLoS One. 2014;9(6), e99399. doi:10.1371/journal.pone.0099399.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Network CGA. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330–7. doi:10.1038/nature11252.

    Article  Google Scholar 

  28. Sheffer M, Bacolod MD, Zuk O, Giardina SF, Pincas H, Barany F, et al. Association of survival and disease progression with chromosomal instability: a genomic exploration of colorectal cancer. Proc Natl Acad Sci U S A. 2009;106(17):7131–6. doi:10.1073/pnas.0902232106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jardim DL, Tang C, Gagliato Dde M, Falchook GS, Hess K, Janku F, et al. Analysis of 1,115 patients tested for MET amplification and therapy response in the MD Anderson Phase I Clinic. Clin Cancer Res. 2014;20(24):6336–45. doi:10.1158/1078-0432.ccr-14-1293.

    Article  CAS  PubMed  Google Scholar 

  30. Gordon MS, Sweeney CS, Mendelson DS, Eckhardt SG, Anderson A, Beaupre DM, et al. Safety, pharmacokinetics, and pharmacodynamics of AMG 102, a fully human hepatocyte growth factor-neutralizing monoclonal antibody, in a first-in-human study of patients with advanced solid tumors. Clin Cancer Res. 2010;16(2):699–710. doi:10.1158/1078-0432.ccr-09-1365.

    Article  CAS  PubMed  Google Scholar 

  31. Katayama R, Aoyama A, Yamori T, Qi J, Oh-hara T, Song Y, et al. Cytotoxic activity of tivantinib (ARQ 197) is not due solely to c-MET inhibition. Cancer Res. 2013;73(10):3087–96. doi:10.1158/0008-5472.can-12-3256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Martens T, Schmidt NO, Eckerich C, Fillbrandt R, Merchant M, Schwall R, et al. A novel one-armed anti-c-Met antibody inhibits glioblastoma growth in vivo. Clin Cancer Res. 2006;12(20 Pt 1):6144–52. doi:10.1158/1078-0432.ccr-05-1418.

    Article  CAS  PubMed  Google Scholar 

  33. Inno A, Di Salvatore M, Cenci T, Martini M, Orlandi A, Strippoli A, et al. Is there a role for IGF1R and c-MET pathways in resistance to cetuximab in metastatic colorectal cancer? Clin Colorectal Cancer. 2011;10(4):325–32. doi:10.1016/j.clcc.2011.03.028.

    Article  CAS  PubMed  Google Scholar 

  34. Abou-Bakr AA, Elbasmi A. c-MET overexpression as a prognostic biomarker in colorectal adenocarcinoma. Gulf J Oncolog. 2013;1(14):28–34.

    CAS  PubMed  Google Scholar 

  35. Garouniatis A, Zizi-Sermpetzoglou A, Rizos S, Kostakis A, Nikiteas N, Papavassiliou AG. FAK, CD44v6, c-Met and EGFR in colorectal cancer parameters: tumor progression, metastasis, patient survival and receptor crosstalk. Int J Color Dis. 2013;28(1):9–18. doi:10.1007/s00384-012-1520-9.

    Article  Google Scholar 

  36. Gao H, Guan M, Sun Z, Bai C. High c-Met expression is a negative prognostic marker for colorectal cancer: a meta-analysis. Tumor Biol. 2015;36(2):515–20. doi:10.1007/s13277-014-2659-5.

    Article  CAS  Google Scholar 

  37. Cappuzzo F, Hirsch FR, Rossi E, Bartolini S, Ceresoli GL, Bemis L, et al. Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. J Natl Cancer Inst. 2005;97(9):643–55. doi:10.1093/jnci/dji112.

    Article  CAS  PubMed  Google Scholar 

  38. Diep CB, Parada LA, Teixeira MR, Eknaes M, Nesland JM, Johansson B, et al. Genetic profiling of colorectal cancer liver metastases by combined comparative genomic hybridization and G-banding analysis. Genes Chromosomes Cancer. 2003;36(2):189–97. doi:10.1002/gcc.10162.

    Article  CAS  PubMed  Google Scholar 

  39. Toffalorio F, de Marinis F, Conforti F, Spitaleri G, Catania C, Noberasco C, et al. Erlotinib efficacy in NSCLC patients with high polysomy of chromosome 7 and EGFR/KRas wild-type tumors. J Thorac Oncol. 2015;10(2):392–6. doi:10.1097/jto.0000000000000355.

    Article  CAS  PubMed  Google Scholar 

  40. Li YH, Wang F, Shen L, Deng YM, Shao Q, Feng F, et al. EGFR fluorescence in situ hybridization pattern of chromosome 7 disomy predicts resistance to cetuximab in KRAS wild-type metastatic colorectal cancer patients. Clin Cancer Res. 2011;17(2):382–90. doi:10.1158/1078-0432.ccr-10-0208.

    Article  PubMed  Google Scholar 

  41. Seo AN, Jin Y, Lee HJ, Sun PL, Kim H, Jheon S, et al. FGFR1 amplification is associated with poor prognosis and smoking in non-small-cell lung cancer. Virchows Arch. 2014;465(5):547–58. doi:10.1007/s00428-014-1634-2.

    Article  CAS  PubMed  Google Scholar 

  42. Hsu FD, Nielsen TO, Alkushi A, Dupuis B, Huntsman D, Liu CL, et al. Tissue microarrays are an effective quality assurance tool for diagnostic immunohistochemistry. Mod Pathol. 2002;15(12):1374–80. doi:10.1097/01.mp.0000039571.02827.ce.

    Article  PubMed  Google Scholar 

  43. Voduc D, Kenney C, Nielsen TO. Tissue microarrays in clinical oncology. Semin Radiat Oncol. 2008;18(2):89–97. doi:10.1016/j.semradonc.2007.10.006.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health and Welfare, Republic of Korea (grant number: HI14C1813).

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hye Seung Lee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Prognostic value of MET GCN and CEP7 CN status in 123 patients with stage II/III CRC. Kaplan-Meier survival curves of MET GCN gain (mean ≥4 MET copies/cell) for (A) overall survival (OS) and (B) progression-free survival (PFS). Kaplan-Meier survival curves of CEP7 polysomy (mean ≥3 CEP7 copies/cell) for (C) OS and (D) PFS (GIF 24 kb)

High resolution image (TIFF 3365 kb)

Supplementary Table S1

(DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, A.N., Park, K.U., Choe, G. et al. Clinical and prognostic value of MET gene copy number gain and chromosome 7 polysomy in primary colorectal cancer patients. Tumor Biol. 36, 9813–9821 (2015). https://doi.org/10.1007/s13277-015-3726-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3726-2

Keywords

Navigation