Skip to main content

Advertisement

Log in

Identification of carcinogenic potential-associated molecular mechanisms in CD133+ A549 cells based on microRNA profiles

  • Research Article
  • Published:
Tumor Biology

Abstract

This study aimed to identify carcinogenic potential-related molecular mechanisms in cancer stem cells (CSCs) in lung cancer. CD133+ and CD133 subpopulations were sorted from A549 cells using magnetic-activated cell sorting. The abilities to form sphere and clone, proliferate, migrate, and invade were compared between CD133+ and CD133 cells, as well as drug sensitivity. Thereafter, microRNA (miRNA) profiles were performed to identify differentially expressed miRNAs between CD133+ and CD133 subpopulation. Following, bioinformatic methods were used to predict target genes for differentially expressed miRNAs and perform enrichment analysis. Furthermore, the mammalian target of rapamycin (mTOR) signaling pathways and CSC property-associated signaling pathways were explored and visualized in regulatory network among competitive endogenous RNA (ceRNA), miRNA, and target gene. CD133+ subpopulation showed greater oncogenic potential than CD133 subpopulation. In all, 14 differentially expressed miRNAs were obtained and enriched in 119 pathways, including five upregulated (hsa-miR-23b-3p, -23a-3p, -15b-5p, -24-3p, and -4734) and nine downregulated (hsa-miR-1246, -30b-5p, -5096, -6510-5p, has-miR-7110-5p, -7641, -3197, -7108-5p, and -6791-5p). For mTOR signaling pathway, eight differential miRNAs (hsa-miR-23b-3p, -23a-3p, -15b-5p, -24-3p, -4734, -1246, -7641, and -3197) and 39 target genes (e.g., AKT1, AKT2, PIK3CB, PIK3CG, PIK3R1, PIK3CA, and PIK3CD) were involved, as well as some ceRNAs. Besides, for CSC property-related signaling pathways, six miRNAs (hsa-miR-1246, -15b-5p, -30b-5p, -3197, -4734, and -7110-5p) were dramatically enriched in Hedgehog, Notch, and Wnt signaling pathways via regulating 108 target genes (e.g., DVL1, DVL3, WNT3A, and WNT5A). The mTOR and CSC property-associated signaling pathways may be important oncogenic molecular mechanisms in CD133+ A549 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mehan MR, Williams SA, Siegfried JM, Bigbee WL, Weissfeld JL, Wilson DO, et al. Validation of a blood protein signature for non-small cell lung cancer. Clinical proteomics. 2014;11:32.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  3. Bhattarai B, Schmidt MF, Ghosh M, Sinha Ray A, Manhas S, Oke V, et al. Lung cancer with skin and breast metastasis: a case report and literature review. Case reports in pulmonology. 2015;2015:136970.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer. Nat Rev Cancer. 2003;3:895–902.

    Article  CAS  PubMed  Google Scholar 

  5. Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, et al. Cancer stem cells—perspectives on current status and future directions: Aacr workshop on cancer stem cells. Cancer Res. 2006;66:9339–44.

    Article  CAS  PubMed  Google Scholar 

  6. Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A, et al. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ. 2007;15:504–14.

    Article  PubMed  Google Scholar 

  7. Pine SR, Marshall B, Varticovski L. Lung cancer stem cells. Dis Markers. 2008;24:257–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wu Y, Wu PY. Cd133 as a marker for cancer stem cells: progresses and concerns. Stem Cells Dev. 2009;18:1127–34.

    Article  CAS  PubMed  Google Scholar 

  9. Bertolini G, Roz L, Perego P, Tortoreto M, Fontanella E, Gatti L, et al. Highly tumorigenic lung cancer cd133+ cells display stem-like features and are spared by cisplatin treatment. Proc Natl Acad Sci U S A. 2009;106:16281–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Meng X, Li M, Wang X, Wang Y, Ma D. Both cd133+ and cd133- subpopulations of a549 and h446 cells contain cancer-initiating cells. Cancer Sci. 2009;100:1040–6.

    Article  CAS  PubMed  Google Scholar 

  11. Cai Z, Ke J, He X, Yuan R, Chen Y, Wu X, et al. Significance of mtor signaling and its inhibitor against cancer stem-like cells in colorectal cancer. Ann Surg Oncol. 2014;21:179–88.

    Article  PubMed  Google Scholar 

  12. Papadimitrakopoulou V. Development of pi3k/akt/mtor pathway inhibitors and their application in personalized therapy for non-small-cell lung cancer. J Thorac Oncol. 2012;7:1315–26.

    Article  CAS  PubMed  Google Scholar 

  13. Bao B, Ali S, Ahmad A, Li Y, Banerjee S, Kong D, et al. Differentially expressed mirnas in cancer stem like cells: markers for tumor cell aggressiveness of pancreatic cancer. Stem Cells Dev. 2014;23:1947–58.

    Article  CAS  PubMed  Google Scholar 

  14. Garofalo M, Croce CM. Role of micrornas in maintaining cancer stem cells. Adv Drug Deliv Rev. 2015;81:53–61.

    Article  CAS  PubMed  Google Scholar 

  15. Eades G, Zhang Y-S, Li Q-L, Xia J-X, Yao Y, Zhou Q. Long non-coding rnas in stem cells and cancer. World journal of clinical oncology. 2014;5:134.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Nie F-Q, Zhu Q, Xu T-P, Zou Y-F, Xie M, Sun M, Xia R, Lu K-H. Long non-coding rna mvih indicates a poor prognosis for non-small cell lung cancer and promotes cell proliferation and invasion. Tumor Biol 2014:1–8.

  17. van der Meer AD, Vermeul K, Poot AA, Feijen J, Vermes I. A microfluidic wound-healing assay for quantifying endothelial cell migration. Am J Physiol Heart Circ Physiol. 2010;298:H719–25.

    Article  PubMed  Google Scholar 

  18. Gao X, Gulari E, Zhou X. In situ synthesis of oligonucleotide microarrays. Biopolymers. 2004;73:579–96.

    Article  CAS  PubMed  Google Scholar 

  19. Bolstad BM, Irizarry RA, Åstrand M, Speed TP. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 2003;19:185–93.

    Article  CAS  PubMed  Google Scholar 

  20. Wang X. Mirdb: a microrna target prediction and functional annotation database with a wiki interface. RNA. 2008;14:1012–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Garcia DM, Baek D, Shin C, Bell GW, Grimson A, Bartel DP. Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other micrornas. Nat Struct Mol Biol. 2011;18:1139–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Von Mering C, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B. String: a database of predicted functional associations between proteins. Nucleic Acids Res. 2003;31:258–61.

    Article  Google Scholar 

  23. Chang L, Graham P, Hao J, Ni J, Bucci J, Cozzi P, et al. Acquisition of epithelial–mesenchymal transition and cancer stem cell phenotypes is associated with activation of the pi3k/akt/mtor pathway in prostate cancer radioresistance. Cell Death Dis. 2013;4:e875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kohl M, Wiese S, Warscheid B. Cytoscape: software for visualization and analysis of biological networks; Data mining in proteomics, Springer. 2011: 291–303.

  25. Li J-H, Liu S, Zhou H, Qu L-H, Yang J-H. Starbase v2. 0: decoding mirna-cerna, mirna-ncrna and protein–rna interaction networks from large-scale clip-seq data. Nucleic Acids Res. 2014;42:D92–7.

    Article  CAS  PubMed  Google Scholar 

  26. Takebe N, Harris PJ, Warren RQ, Ivy SP. Targeting cancer stem cells by inhibiting wnt, notch, and hedgehog pathways. Nat Rev Clin Oncol. 2011;8:97–106.

    Article  CAS  PubMed  Google Scholar 

  27. van Roy F. Beyond e-cadherin: roles of other cadherin superfamily members in cancer. Nat Rev Cancer. 2014;14:121–34.

    Article  PubMed  Google Scholar 

  28. Zhong K, Chen K, Han L, Li B. Microrna-30b/c inhibits non-small cell lung cancer cell proliferation by targeting rab18. BMC Cancer. 2014;14:703.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kim J, Lim NJ, Jang SG, Kim HK, Lee GK. Mir-592 and mir-552 can distinguish between primary lung adenocarcinoma and colorectal cancer metastases in the lung. Anticancer Res. 2014;34:2297–302.

    PubMed  Google Scholar 

  30. Li B, Sun M, Gao F, Liu W, Yang Y, Liu H, et al. Up-regulated expression of mir-23a/b targeted the pro-apoptotic fas in radiation-induced thymic lymphoma. Chem Biol Interact. 2013;32:1729–40.

    CAS  Google Scholar 

  31. Kim KM, Heo DR, Lee J, Park JS, Baek MG, Yi JM, et al. 5,3′-Dihydroxy-6,7,4′-trimethoxyflavanone exerts its anticancer and antiangiogenesis effects through regulation of the akt/mtor signaling pathway in human lung cancer cells. Chem Biol Interact. 2015;225:32–9.

    Article  CAS  PubMed  Google Scholar 

  32. Takeshita N, Hoshino I, Mori M, Akutsu Y, Hanari N, Yoneyama Y, et al. Serum microrna expression profile: Mir-1246 as a novel diagnostic and prognostic biomarker for oesophageal squamous cell carcinoma. Br J Cancer. 2013;108:644–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhu LH, Liu T, Tang H, Tian RQ, Su C, Liu M, et al. Microrna-23a promotes the growth of gastric adenocarcinoma cell line mgc803 and downregulates interleukin-6 receptor. FEBS J. 2010;277:3726–34.

    Article  CAS  PubMed  Google Scholar 

  34. Huang S, He X, Ding J, Liang L, Zhao Y, Zhang Z, et al. Upregulation of mir-23a approximately 27a approximately 24 decreases transforming growth factor-beta-induced tumor-suppressive activities in human hepatocellular carcinoma cells. Int J Cancer. 2008;123:972–8.

    Article  CAS  PubMed  Google Scholar 

  35. Cao M, Seike M, Soeno C, Mizutani H, Kitamura K, Minegishi Y, et al. Mir-23a regulates tgf-β-induced epithelial-mesenchymal transition by targeting e-cadherin in lung cancer cells. Int J Oncol. 2012;41:869–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Bjornsti M-A, Houghton PJ. The tor pathway: a target for cancer therapy. Nat Rev Cancer. 2004;4:335–48.

    Article  CAS  PubMed  Google Scholar 

  37. Morgensztern D, McLeod HL. Pi3k/akt/mtor pathway as a target for cancer therapy. Anticancer Drugs. 2005;16:797–803.

    Article  CAS  PubMed  Google Scholar 

  38. Esteller M. Non-coding rnas in human disease. Nat Rev Genet. 2011;12:861–74.

    Article  CAS  PubMed  Google Scholar 

  39. Huang K-C, Rao PH, Lau CC, Heard E, Ng S-K, Brown C, et al. Relationship of xist expression and responses of ovarian cancer to chemotherapy 1 this work was partly supported by nih grants ca70216 and gm 59920 (to sw. N.). 1. Mol Cancer Ther. 2002;1:769–76.

    CAS  PubMed  Google Scholar 

  40. Weakley SM, Wang H, Yao Q, Chen C. Expression and function of a large non-coding rna gene xist in human cancer. World J Surg. 2011;35:1751–6.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Rosso SB, Sussman D, Wynshaw-Boris A, Salinas PC. Wnt signaling through dishevelled, rac and jnk regulates dendritic development. Nat Neurosci. 2004;8:34–42.

    Article  PubMed  Google Scholar 

  42. Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature. 2005;434:843–50.

    Article  CAS  PubMed  Google Scholar 

  43. Takahashi-Yanaga F, Kahn M. Targeting wnt signaling: can we safely eradicate cancer stem cells? Clin Cancer Res. 2010;16:3153–62.

    Article  CAS  PubMed  Google Scholar 

  44. Yang Y-P, Chien Y, Chiou G-Y, Cherng J-Y, Wang M-L, Lo W-L, et al. Inhibition of cancer stem cell-like properties and reduced chemoradioresistance of glioblastoma using microrna145 with cationic polyurethane-short branch pei. Biomaterials. 2012;33:1462–76.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by “334” High-tech Talent Training Program of Nanjing Military Command and Natural Science Foundation of Zhejiang Province of China (LY12H16001).

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing-yong Chen or Li Yan.

Additional information

Highlights

1. CD133+ A549 cells showed greater carcinogenic potential than CD133 subpopulation.

2. Totally, 14 differentially expressed miRNAs were identified in CD133+ A549 cells.

3. Totally, 119 signaling pathways were enriched by 14 differentially expressed miRNAs.

4. The mTOR signaling pathway was enriched by eight dysregulated miRNAs via 39 targets.

5. Stem cell property-related pathways were enriched by six dysregulated miRNAs.

Qing-yong Chen, De-min Jiao and Ya Zhu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

CD133 expression checked by flow cytometry. a, CD133 expression of harvested cells before magnetic activated cell sorting; b, CD133 expression of CD133+ fractions after magnetic activated cell sorting. (GIF 15 kb)

(TIFF 522 KB)

Supplementary Fig. 2

Network of differentially expressed miRNA and CD133 (PROM1). Red circle represents target gene, and green triangle represents differentially expressed miRNA. miRNA, microRNA. (GIF 46 kb)

(TIFF 159 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Qy., Jiao, Dm., Zhu, Y. et al. Identification of carcinogenic potential-associated molecular mechanisms in CD133+ A549 cells based on microRNA profiles. Tumor Biol. 37, 521–530 (2016). https://doi.org/10.1007/s13277-015-3675-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3675-9

Keywords

Navigation