Skip to main content

Advertisement

Log in

Association of CCND1 overexpression with KRAS and PTEN alterations in specific subtypes of non-small cell lung carcinoma and its influence on patients’ outcome

  • Research Article
  • Published:
Tumor Biology

Abstract

Cyclin D1 is one of the major cellular oncogenes, overexpressed in number of human cancers, including non-small cell lung carcinoma (NSCLC). However, it does not exert tumorigenic activity by itself, but rather cooperates with other altered oncogenes and tumor suppressors. Therefore, in the present study, we have examined mutual role of cyclin D1, KRAS, and PTEN alterations in the pathogenesis of NSCLC and their potential to serve as multiple molecular markers for this disease. CCND1 gene amplification and gene expression were analyzed in relation to mutational status of KRAS gene as well as to PTEN alterations (loss of heterozygosity and promoter hypermethylation) in NSCLC patient samples. Moreover, the effect of these co-alterations on patient survival was examined. Amplified CCND1 gene was exclusively associated with increased gene expression. Statistical analyses also revealed significant association between CCND1 overexpression and KRAS mutations in the whole group and in the groups of patients with adenocarcinoma, grade 1/2, and stage I/II. In addition, CCND1 overexpression was significantly related to PTEN promoter hypermethylation in the whole group and in the group of patients with squamous cell carcinoma and lymph node invasion. These joint alterations also significantly shortened patients’ survival and were shown to be an independent factor for adverse prognosis. Overall results point that cyclin D1 expression cooperates with KRAS and PTEN alterations in pathogenesis of NSCLC, and they could serve as potential multiple molecular markers for specific subgroups of NSCLC patients as well as prognostic markers for this type of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Park MT, Lee SJ. Cell cycle and cancer. J Biochem Mol Biol. 2003;36(1):60–5.

    CAS  PubMed  Google Scholar 

  2. Malumbres M, Barbacid M. Mammalian cyclin-dependent kinases. Trends Biochem Sci. 2005;30(11):630–41. doi:10.1016/j.tibs.2005.09.005.

    Article  CAS  PubMed  Google Scholar 

  3. Aktas H, Cai H, Cooper GM. Ras links growth factor signaling to the cell cycle machinery via regulation of cyclin D1 and the Cdk inhibitor p27KIP1. Mol Cell Biol. 1997;17(7):3850–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cheng M, Sexl V, Sherr CJ, Roussel MF. Assembly of cyclin D-dependent kinase and titration of p27Kip1 regulated by mitogen-activated protein kinase kinase (MEK1). Proc Natl Acad Sci U S A. 1998;95(3):1091–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Koziczak M, Hynes NE. Cooperation between fibroblast growth factor receptor-4 and ErbB2 in regulation of cyclin D1 translation. J Biol Chem. 2004;279(48):50004–11. doi:10.1074/jbc.M404252200.

    Article  CAS  PubMed  Google Scholar 

  6. Muise-Helmericks RC, Grimes HL, Bellacosa A, Malstrom SE, Tsichlis PN, Rosen N. Cyclin D expression is controlled post-transcriptionally via a phosphatidylinositol 3-kinase/Akt-dependent pathway. J Biol Chem. 1998;273(45):29864–72.

    Article  CAS  PubMed  Google Scholar 

  7. Diehl JA, Cheng M, Roussel MF, Sherr CJ. Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev. 1998;12(22):3499–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chung JH, Ostrowski MC, Romigh T, Minaguchi T, Waite KA, Eng C. The ERK1/2 pathway modulates nuclear PTEN-mediated cell cycle arrest by cyclin D1 transcriptional regulation. Hum Mol Genet. 2006;15(17):2553–9. doi:10.1093/hmg/ddl177.

    Article  CAS  PubMed  Google Scholar 

  9. Bosch F, Jares P, Campo E, Lopez-Guillermo A, Piris MA, Villamor N, et al. PRAD-1/cyclin D1 gene overexpression in chronic lymphoproliferative disorders: a highly specific marker of mantle cell lymphoma. Blood. 1994;84(8):2726–32.

    CAS  PubMed  Google Scholar 

  10. Kramer A, Schultheis B, Bergmann J, Willer A, Hegenbart U, Ho AD, et al. Alterations of the cyclin D1/pRb/p16(INK4A) pathway in multiple myeloma. Leukemia. 2002;16(9):1844–51. doi:10.1038/sj.leu.2402609.

    Article  CAS  PubMed  Google Scholar 

  11. Gautschi O, Ratschiller D, Gugger M, Betticher DC, Heighway J. Cyclin D1 in non-small cell lung cancer: a key driver of malignant transformation. Lung Cancer. 2007;55(1):1–14. doi:10.1016/j.lungcan.2006.09.024.

    Article  PubMed  Google Scholar 

  12. Hanken H, Grobe A, Cachovan G, Smeets R, Simon R, Sauter G, et al. CCND1 amplification and cyclin D1 immunohistochemical expression in head and neck squamous cell carcinomas. Clin Oral Invest. 2014;18(1):269–76. doi:10.1007/s00784-013-0967-6.

    Article  Google Scholar 

  13. Sunpaweravong P, Sunpaweravong S, Puttawibul P, Mitarnun W, Zeng C, Baron AE, et al. Epidermal growth factor receptor and cyclin D1 are independently amplified and overexpressed in esophageal squamous cell carcinoma. J Cancer Res Clin Oncol. 2005;131(2):111–9. doi:10.1007/s00432-004-0610-7.

    Article  CAS  PubMed  Google Scholar 

  14. Seiler R, Thalmann GN, Rotzer D, Perren A, Fleischmann A. CCND1/CyclinD1 status in metastasizing bladder cancer: a prognosticator and predictor of chemotherapeutic response. Modern Pathol : Off J US Can Acad Pathol, Inc. 2014;27(1):87–95. doi:10.1038/modpathol.2013.125.

    Article  CAS  Google Scholar 

  15. Tanic N, Milinkovic V, Dramicanin T, Nedeljkovic M, Stankovic T, Milovanovic Z et al. Amplification of Cycline D1, C-Myc and Egfr Oncogenes in Tumour Samples of Breast Cancer Patients. J Med Biochem. 2013;32(4). doi: 10.2478/jomb-2014-0005.

  16. Andjelkovic T, Bankovic J, Stojsic J, Milinkovic V, Podolski-Renic A, Ruzdijic S, et al. Coalterations of p53 and PTEN tumor suppressor genes in non-small cell lung carcinoma patients. Transl Res. 2011;157(1):19–28. doi:10.1016/j.trsl.2010.09.004.

    Article  CAS  PubMed  Google Scholar 

  17. Sambrook J. Purification of Nucleic Acids. In: Nolan C, editor. Molecular cloning: a laboratory manual. secondth ed. Cold Spring Harbour: Cold Spring Harbor: Laboratory Press; 1989. p. E.3–4.

    Google Scholar 

  18. Milinkovic V, Bankovic J, Rakic M, Stankovic T, Skender-Gazibara M, Ruzdijic S, et al. Identification of novel genetic alterations in samples of malignant glioma patients. PLoS One. 2013;8(12):e82108. doi:10.1371/journal.pone.0082108.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Schneeberger C, Eder S, Swoboda H, Ullrich R, Zeillinger R. A differential PCR system for the determination of CCND1 (cyclin D1) gene amplification in head and neck squamous cell carcinomas. Oral Oncol. 1998;34(4):257–60.

    Article  CAS  PubMed  Google Scholar 

  20. Wong H, Anderson WD, Cheng T, Riabowol KT. Monitoring mRNA expression by polymerase chain reaction: the "primer-dropping" method. Anal Biochem. 1994;223(2):251–8. doi:10.1006/abio.1994.1581.

    Article  CAS  PubMed  Google Scholar 

  21. NicAmhlaoibh R, Heenan M, Cleary I, Touhey S, O'Loughlin C, Daly C, et al. Altered expression of mRNAs for apoptosis-modulating proteins in a low level multidrug resistant variant of a human lung carcinoma cell line that also expresses mdr1 mRNA. Int J Cancer J Int du Cancer. 1999;82(3):368–76.

    Article  CAS  Google Scholar 

  22. Milosevic Z, Pesic M, Stankovic T, Dinic J, Milovanovic Z, Stojsic J, et al. Targeting RAS-MAPK-ERK and PI3K-AKT-mTOR signal transduction pathways to chemosensitize anaplastic thyroid carcinoma. Transl Res. 2014;164(5):411–23. doi:10.1016/j.trsl.2014.06.005.

    Article  CAS  PubMed  Google Scholar 

  23. COSMIC: Catalogue of Somatic Mutations in Cancer, http://cancer.sanger.ac.uk/cosmic

  24. Marchetti A, Doglioni C, Barbareschi M, Buttitta F, Pellegrini S, Gaeta P, et al. Cyclin D1 and retinoblastoma susceptibility gene alterations in non-small cell lung cancer. Int J Cancer J Int du Cancer. 1998;75(2):187–92.

    Article  CAS  Google Scholar 

  25. Reissmann PT, Koga H, Figlin RA, Holmes EC, Slamon DJ. Amplification and overexpression of the cyclin D1 and epidermal growth factor receptor genes in non-small-cell lung cancer. Lung Cancer Study Group J Cancer Res Clin Oncol. 1999;125(2):61–70.

    Article  CAS  Google Scholar 

  26. Kim JK, Diehl JA. Nuclear cyclin D1: an oncogenic driver in human cancer. J Cell Physiol. 2009;220(2):292–6. doi:10.1002/jcp.21791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wong NA, Morris RG, McCondochie A, Bader S, Jodrell DI, Harrison DJ. Cyclin D1 overexpression in colorectal carcinoma in vivo is dependent on beta-catenin protein dysregulation, but not k-ras mutation. J Pathol. 2002;197(1):128–35. doi:10.1002/path.1113.

    Article  CAS  PubMed  Google Scholar 

  28. Moreno-Bueno G, Rodriguez-Perales S, Sanchez-Estevez C, Marcos R, Hardisson D, Cigudosa JC, et al. Molecular alterations associated with cyclin D1 overexpression in endometrial cancer. Int J Cancer J Int du Cancer. 2004;110(2):194–200. doi:10.1002/ijc.20130.

    Article  CAS  Google Scholar 

  29. Lazzereschi D, Sambuco L, Carnovale Scalzo C, Ranieri A, Mincione G, Nardi F, et al. Cyclin D1 and Cyclin E expression in malignant thyroid cells and in human thyroid carcinomas. Int J Cancer J Int du Cancer. 1998;76(6):806–11.

    Article  CAS  Google Scholar 

  30. Yamazaki K, Hanami K, Nagao T, Asoh A, Sugano I, Ishida Y. Increased cyclin D1 expression in cancer of the ampulla of Vater: relevance to nuclear beta catenin accumulation and k-ras gene mutation. Mole Pathol : MP. 2003;56(6):336–41.

    Article  CAS  Google Scholar 

  31. Park YH, Kim SU, Lee BK, Kim HS, Song IS, Shin HJ, et al. Prx I suppresses K-ras-driven lung tumorigenesis by opposing redox-sensitive ERK/cyclin D1 pathway. Antioxidants Redox Signaling. 2013;19(5):482–96. doi:10.1089/ars.2011.4421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chu M, Guo J, Chen CY. Long-term exposure to nicotine, via ras pathway, induces cyclin D1 to stimulate G1 cell cycle transition. J Biol Chem. 2005;280(8):6369–79. doi:10.1074/jbc.M408947200.

    Article  CAS  PubMed  Google Scholar 

  33. Floyd HS, Jennings-Gee JE, Kock ND, Miller MS. Genetic and epigenetic alterations in lung tumors from bitransgenic Ki-rasG12C expressing mice. Mol Carcinog. 2006;45(7):506–17. doi:10.1002/mc.20181.

    Article  CAS  PubMed  Google Scholar 

  34. Rodenhuis S, van de Wetering ML, Mooi WJ, Evers SG, van Zandwijk N, Bos JL. Mutational activation of the K-ras oncogene. A possible pathogenetic factor in adenocarcinoma of the lung. New England J Med. 1987;317(15):929–35. doi:10.1056/NEJM198710083171504.

    Article  CAS  Google Scholar 

  35. Sartori G, Cavazza A, Bertolini F, Longo L, Marchioni A, Costantini M, et al. A subset of lung adenocarcinomas and atypical adenomatous hyperplasia-associated foci are genotypically related: an EGFR, HER2, and K-ras mutational analysis. Am J Clin Pathol. 2008;129(2):202–10. doi:10.1309/THU13F3JRJVWLM30.

    Article  CAS  PubMed  Google Scholar 

  36. Weng LP, Brown JL, Eng C. PTEN coordinates G(1) arrest by down-regulating cyclin D1 via its protein phosphatase activity and up-regulating p27 via its lipid phosphatase activity in a breast cancer model. Hum Mol Genet. 2001;10(6):599–604.

    Article  CAS  PubMed  Google Scholar 

  37. Radu A, Neubauer V, Akagi T, Hanafusa H, Georgescu MM. PTEN induces cell cycle arrest by decreasing the level and nuclear localization of cyclin D1. Mol Cell Biol. 2003;23(17):6139–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chung JH, Eng C. Nuclear-cytoplasmic partitioning of phosphatase and tensin homologue deleted on chromosome 10 (PTEN) differentially regulates the cell cycle and apoptosis. Cancer Res. 2005;65(18):8096–100. doi:10.1158/0008-5472.CAN-05-1888.

    Article  CAS  PubMed  Google Scholar 

  39. Li J, Yin LL, Su KL, Zhang GF, Wang J. Concomitant depletion of PTEN and p27 and overexpression of cyclin D1 may predict a worse prognosis for patients with post-operative stage II and III colorectal cancer. Oncol Lett. 2014;8(4):1543–50. doi:10.3892/ol.2014.2350.

    PubMed  PubMed Central  Google Scholar 

  40. Capodanno A, Camerini A, Orlandini C, Baldini E, Resta ML, Bevilacqua G, et al. Dysregulated PI3K/Akt/PTEN pathway is a marker of a short disease-free survival in node-negative breast carcinoma. Hum Pathol. 2009;40(10):1408–17. doi:10.1016/j.humpath.2009.02.005.

    Article  CAS  PubMed  Google Scholar 

  41. Bose S, Chandran S, Mirocha JM, Bose N. The Akt pathway in human breast cancer: a tissue-array-based analysis. Modern Pathol: Off J US Can Acad Pathol, Inc. 2006;19(2):238–45. doi:10.1038/modpathol.3800525.

    Article  CAS  Google Scholar 

  42. Kurose K, Zhou XP, Araki T, Cannistra SA, Maher ER, Eng C. Frequent loss of PTEN expression is linked to elevated phosphorylated Akt levels, but not associated with p27 and cyclin D1 expression, in primary epithelial ovarian carcinomas. Am J Pathol. 2001;158(6):2097–106. doi:10.1016/S0002-9440(10)64681-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Engin H, Baltali E, Guler N, Guler G, Tekuzman G, Uner A. Expression of PTEN, cyclin D1, P27/KIP1 in invasive ductal carcinomas of the breast and correlation with clinicopathological parameters. Bull Cancer. 2006;93(2):E21–6.

    PubMed  Google Scholar 

  44. Zhang LQ, Jiang F, Xu L, Wang J, Bai JL, Yin R, et al. The role of cyclin D1 expression and patient's survival in non-small-cell lung cancer: a systematic review with meta-analysis. Clin Lung Cancer. 2012;13(3):188–95. doi:10.1016/j.cllc.2011.10.003.

    Article  CAS  PubMed  Google Scholar 

  45. Marsit CJ, Zheng S, Aldape K, Hinds PW, Nelson HH, Wiencke JK, et al. PTEN expression in non-small-cell lung cancer: evaluating its relation to tumor characteristics, allelic loss, and epigenetic alteration. Hum Pathol. 2005;36(7):768–76. doi:10.1016/j.humpath.2005.05.006.

    Article  CAS  PubMed  Google Scholar 

  46. Kim DS, Lee SM, Yoon GS, Choi JE, Park JY. Infrequent hypermethylation of the PTEN gene in Korean non-small-cell lung cancers. Cancer Sci. 2010;101(2):568–72. doi:10.1111/j.1349-7006.2009.01406.x.

    Article  CAS  PubMed  Google Scholar 

  47. Sasaki H, Okuda K, Endo K, Kawano O, Yukiue H, Yokoyama T, et al. CCND1 messenger RNA expression is correlated with EGFR mutation status in lung cancer. Clin Lung Cancer. 2007;8(8):493–6. doi:10.3816/CLC.2007.n.034.

    Article  CAS  PubMed  Google Scholar 

  48. Sun W, Song L, Ai T, Zhang Y, Gao Y, Cui J. Prognostic value of MET, cyclin D1 and MET gene copy number in non-small cell lung cancer. J Biomed Res. 2013;27(3):220–30. doi:10.7555/jbr.27.20130004.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (grant No III41031).

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tijana Stankovic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dragoj, M., Milosevic, Z., Bankovic, J. et al. Association of CCND1 overexpression with KRAS and PTEN alterations in specific subtypes of non-small cell lung carcinoma and its influence on patients’ outcome. Tumor Biol. 36, 8773–8780 (2015). https://doi.org/10.1007/s13277-015-3620-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3620-y

Keywords

Navigation