Skip to main content
Log in

Methyl methanesulfonate induces necroptosis in human lung adenoma A549 cells through the PIG-3-reactive oxygen species pathway

  • Research Article
  • Published:
Tumor Biology

Abstract

Methyl methanesulfonate (MMS) is an alkylating agent that can induce cell death through apoptosis and necroptosis. The molecular mechanisms underlying MMS-induced apoptosis have been studied extensively; however, little is known about the mechanism for MMS-induced necroptosis. Therefore, we first established MMS-induced necroptosis model using human lung carcinoma A549 cells. It was found that, within a 24-h period, although MMS at concentrations of 50, 100, 200, 400, and 800 μM can induce DNA damage, only at higher concentrations (400 and 800 μM) MMS treatment lead to necroptosis in A549 cells, as it could be inhibited by the specific necroptotic inhibitor necrostatin-1, but not the specific apoptotic inhibitor carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone (Z-VAD-fmk). MMS-induced necroptosis was further confirmed by the induction of the necroptosis biomarkers including the depletion of cellular NADH and ATP and leakage of LDH. This necroptotic cell death was also concurrent with the increased expression of p53, p53-induced gene 3 (PIG-3), high mobility group box-1 protein (HMGB1), and receptor interaction protein kinase (RIP) but not the apoptosis-associated caspase-3 and caspase-9 proteins. Elevated reactive oxygen species (ROS) level was also involved in this process as the specific ROS inhibitor (4-amino-2,4-pyrrolidine-dicarboxylic acid (APDC)) can inhibit the necroptotic cell death. Interestingly, knockdown of PIG-3 expression by small interfering RNA (siRNA) treatment can inhibit the generation of ROS. Taken together, these results suggest that MMS can induce necroptosis in A549 cells, probably through the PIG-3-ROS pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

MMS:

Methyl methanesulfonate

DSB:

Double-strand break

PIG-3:

p53-induced gene 3

H2DCF-DA:

Dichlorodihydrofluorescein diacetate

HMGB1:

High mobility group box-1 protein

RIP:

Receptor interaction protein kinase

APDC:

4-Amino-2,4-pyrrolidine-dicarboxylic acid

References

  1. Beranek DT. Distribution of methyl and ethyl adducts following alkylation with monofunctional alkylating agents. Mutat Res. 1990;1:11–30.

    Article  Google Scholar 

  2. Lundin C, North M, Erixon K, Walters K, Jenssen D, Goldman AS, et al. Methyl methanesulfonate (MMS) produces heat-labile DNA damage but no detectable in vivo DNA double-strand breaks. Nucleic Acids Res. 2005;33:3799–811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lackinger D, Eichhorn U, Kaina B. Effect of ultraviolet light, methyl methanesulfonate and ionizing radiation on the genotoxic response and apoptosis of mouse fibroblasts lacking c-Fos, p53 or both. Mutagenesis. 2001;16:233–41.

    Article  CAS  PubMed  Google Scholar 

  4. Jiang Y, Zhang XY, Sun L, Zhang GL, Duerksen-Hughes P, Zhu XQ, et al. Methyl methanesulfonate induces apoptosis in p53-deficient H1299 and Hep3B cells through a caspase 2- and mitochondria-associated pathway. Environ Toxicol Pharmacol. 2012;34:694–704.

    Article  CAS  PubMed  Google Scholar 

  5. Ryu JC, Seo YR, Smith ML, Han SS. The effect of methyl methanesulfonate (MMS)-induced excision repair on p53-dependent apoptosis in human lymphoid cells. Res Commun Mol Pathol Pharmacol. 2001;109:35–51.

    CAS  PubMed  Google Scholar 

  6. Song BW, Wang L. [Necroptosis: a programmed cell necrosis]. Sheng Li Ke Xue Jin Zhan. 2013;44:281–6.

    CAS  PubMed  Google Scholar 

  7. Tang H, Tian E, Liu C, Wang Q, Deng H. Oxidative stress induces monocyte necrosis with enrichment of cell-bound albumin and overexpression of endoplasmic reticulum and mitochondrial chaperones. PLoS One. 2013;8:e59610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Galluzzi L, Kroemer G. Necroptosis: a specialized pathway of programmed necrosis. Cell. 2008;135:1161–3.

    Article  CAS  PubMed  Google Scholar 

  9. Galluzzi L, Kepp O, Kroemer G. RIP kinases initiate programmed necrosis. J Mol Cell Biol. 2009;1:8–10.

    Article  CAS  PubMed  Google Scholar 

  10. Degterev A, Hitomi J, Germscheid M, Ch’en IL, Korkina O, Teng X, et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol. 2008;4:313–21.

    Article  CAS  PubMed  Google Scholar 

  11. Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N. Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta. 1833;2013:3448–59.

    Google Scholar 

  12. Autheman D, Wyder M, Popoff M, D’Herde K, Christen S, Posthaus H. Clostridium perfringens beta-toxin induces necrostatin-inhibitable, calpain-dependent necrosis in primary porcine endothelial cells. PLoS One. 2013;8:e64644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ribas J, Bettayeb K, Ferandin Y, Knockaert M, Garrofe-Ochoa X, Totzke F, et al. 7-Bromoindirubin-3′-oxime induces caspase-independent cell death. Oncogene. 2006;25:6304–18.

    Article  CAS  PubMed  Google Scholar 

  14. Vanlangenakker N, Vanden Berghe T, Vandenabeele P. Many stimuli pull the necrotic trigger, an overview. Cell Death Differ. 2012;19:75–86.

    Article  CAS  PubMed  Google Scholar 

  15. Choi K, Kim J, Kim GW, Choi C. Oxidative stress-induced necrotic cell death via mitochondria-dependent burst of reactive oxygen species. Curr Neurovasc Res. 2009;6:213–22.

    Article  CAS  PubMed  Google Scholar 

  16. Niemann CU, Choi S, Behrends M, Hirose R, Noh J, Coatney JL, et al. Mild hypothermia protects obese rats from fulminant hepatic necrosis induced by ischemia-reperfusion. Surgery. 2006;140:404–12.

    Article  PubMed  Google Scholar 

  17. Silva JP, Coutinho OP. Free radicals in the regulation of damage and cell death—basic mechanisms and prevention. Drug Discov Ther. 2010;4:144–67.

    CAS  PubMed  Google Scholar 

  18. Zeng M, Xiao F, Zhong X, Jin F, Guan L, Wang A, et al. Reactive oxygen species play a central role in hexavalent chromium-induced apoptosis in Hep3B cells without the functional roles of p53 and caspase-3. Cell Physiol Biochem. 2013;32:279–90.

    Article  CAS  PubMed  Google Scholar 

  19. Valencia A, Kochevar IE. Ultraviolet A induces apoptosis via reactive oxygen species in a model for Smith-Lemli-Opitz syndrome. Free Radic Biol Med. 2006;40:641–50.

    Article  CAS  PubMed  Google Scholar 

  20. Fortes GB, Alves LS, de Oliveira R, Dutra FF, Rodrigues D, Fernandez PL, et al. Heme induces programmed necrosis on macrophages through autocrine TNF and ROS production. Blood. 2012;119:2368–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li J, Li Q, Xie C, Zhou H, Wang Y, Zhang N, et al. Beta-actin is required for mitochondria clustering and ROS generation in TNF-induced, caspase-independent cell death. J Cell Sci. 2004;117:4673–80.

    Article  CAS  PubMed  Google Scholar 

  22. Zhou YJ, Zhang SP, Liu CW, Cai YQ. The protection of selenium on ROS mediated-apoptosis by mitochondria dysfunction in cadmium-induced LLC-PK (1) cells. Toxicol In Vitro. 2009;23:288–94.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang DW, Shao J, Lin J, Zhang N, Lu BJ, Lin SC, et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science. 2009;325:332–6.

    Article  CAS  PubMed  Google Scholar 

  24. Zhu F, Zhang LQ, Gu WJ, Zhu W, Guo YL. [Expression and significance of p53-inducible gene 3 (PIG-3) in diffuse large B cell lymphoma]. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2013;21:396–8.

    CAS  PubMed  Google Scholar 

  25. Lee JH, Kang Y, Khare V, Jin ZY, Kang MY, Yoon Y, et al. The p53-inducible gene 3 (PIG3) contributes to early cellular response to DNA damage. Oncogene. 2010;29:1431–50.

    Article  CAS  PubMed  Google Scholar 

  26. Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B. A model for p53-induced apoptosis. Nature. 1997;389:300–5.

    Article  CAS  PubMed  Google Scholar 

  27. Contente A, Dittmer A, Koch MC, Roth J, Dobbelstein M. A polymorphic microsatellite that mediates induction of PIG3 by p53. Nat Genet. 2002;30:315–20.

    Article  PubMed  Google Scholar 

  28. Horton JK, Stefanick DF, Wilson SH. Involvement of poly (ADP-ribose) polymerase activity in regulating Chk1-dependent apoptotic cell death. DNA Repair (Amst). 2005;4:1111–20.

    Article  CAS  Google Scholar 

  29. Mlejnek P, Frydrych I, Dolezel P. Cyclosporin A potentiates the cytotoxic effects of methyl methanesulphonate in HL-60 and K562 cells. Altern Lab Anim. 2007;35:79–85.

    CAS  PubMed  Google Scholar 

  30. Liu M, Wu W, Li H, Li S, Huang LT, Yang YQ, Sun Q, Wang CX, Yu Z, Hang CH. Necroptosis, a novel type of programmed cell death, contributes to early neural cells damage after spinal cord injury in adult mice. J Spinal Cord Med. 2014.

  31. Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 1988;175:184–91.

    Article  CAS  PubMed  Google Scholar 

  32. Nicotera P, Leist M, Ferrando-May E. Intracellular ATP, a switch in the decision between apoptosis and necrosis. Toxicol Lett. 1998;102–103:139–42.

    Article  PubMed  Google Scholar 

  33. Nicotera P, Melino G. Regulation of the apoptosis-necrosis switch. Oncogene. 2004;23:2757–65.

    Article  CAS  PubMed  Google Scholar 

  34. Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol. 2010;11:700–14.

    Article  CAS  PubMed  Google Scholar 

  35. Silber JR, Bobola MS, Blank A, Schoeler KD, Haroldson PD, Huynh MB, et al. The apurinic/apyrimidinic endonuclease activity of Ape1/Ref-1 contributes to human glioma cell resistance to alkylating agents and is elevated by oxidative stress. Clin Cancer Res. 2002;8:3008–18.

    CAS  PubMed  Google Scholar 

  36. Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol. 2005;1:112–9.

    Article  CAS  PubMed  Google Scholar 

  37. Lin T, Yang MS. Benzo[a]pyrene-induced necrosis in the HepG (2) cells via PARP-1 activation and NAD (+) depletion. Toxicology. 2008;245:147–53.

    Article  CAS  PubMed  Google Scholar 

  38. Vanden Berghe T, Vanlangenakker N, Parthoens E, Deckers W, Devos M, Festjens N, et al. Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. Cell Death Differ. 2010;17:922–30.

    Article  CAS  PubMed  Google Scholar 

  39. Ye YC, Wang HJ, Yu L, Tashiro S, Onodera S, Ikejima T. RIP1-mediated mitochondrial dysfunction and ROS production contributed to tumor necrosis factor alpha-induced L929 cell necroptosis and autophagy. Int Immunopharmacol. 2012;14:674–82.

    Article  CAS  PubMed  Google Scholar 

  40. Li B, Shang ZF, Yin JJ, Xu QZ, Liu XD, Wang Y, et al. PIG3 functions in DNA damage response through regulating DNA-PKcs homeostasis. Int J Biol Sci. 2013;9:425–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from National Natural Science Foundation of China (Nos. 81172692, 81373036, and 81202241); Zhejiang Provincial Department of Science and Technology (2013C14016); Ministry of Science and Technology, China (2009DFB30390); and Post Doctor Science Fundation of China (No. 2011M501356). J. Yang is a recipient of the Zhejiang Provincial Program for the Cultivation of High-Level Innovative Health Talents.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinqiang Zhu or Jun Yang.

Additional information

Ying Jiang and Shigang Shan contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Shan, S., Chi, L. et al. Methyl methanesulfonate induces necroptosis in human lung adenoma A549 cells through the PIG-3-reactive oxygen species pathway. Tumor Biol. 37, 3785–3795 (2016). https://doi.org/10.1007/s13277-015-3531-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3531-y

Keywords

Navigation