Skip to main content

Advertisement

Log in

Prognostic significance of the absolute monocyte counts in lung cancer patients with venous thromboembolism

  • Research Article
  • Published:
Tumor Biology

Abstract

We investigated the clinical significance of the absolute monocyte count (AMC) as a predictor of the response to anticoagulation and survival in lung cancer patients with venous thromboembolism (VTE). We retrospectively reviewed 1707 patients with pathologically proven lung cancer who visited the hospital between July 2008 and May 2014. Among them, the clinical data of patients newly diagnosed with VTE and treated with anticoagulation were compared between the low and high AMC groups according to the median value of AMC (640/μL) at the time of VTE diagnosis. The incidence of VTE was 7.9 % during the study period. Most of the patients had non-small-cell lung cancer (82.1 %), stage IV (64.2 %), and pulmonary thromboembolism (76.1 %) and were incidentally diagnosed with VTE (76.9 %). The patients’ characteristics and laboratory values were not significantly different between the low and high AMC groups. Among patients available for evaluation of the response to anticoagulation, the high AMC group was significantly more refractory to anticoagulation than the low AMC group (no response to anticoagulation, 21.7 vs. 6.8 %, respectively; p = 0.044). Additionally, the high AMC group showed worse overall survival (OS) than the low AMC group (median, 9.6 vs. 5.9 months; p = 0.038). On multivariate analysis, high AMC, low albumin, and advanced stage were independent poor prognostic factors for OS. High AMC is associated with refractoriness to anticoagulation and poor prognosis in lung cancer patients with VTE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Caine GJ, Stonelake PS, Lip GY, Kehoe ST. The hypercoagulable state of malignancy: pathogenesis and current debate. Neoplasia. 2002;4:465–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Khorana AA, Dalal M, Lin J, Connolly GC. Incidence and predictors of venous thromboembolism (VTE) among ambulatory high-risk cancer patients undergoing chemotherapy in the United States. Cancer. 2013;119:648–55.

    Article  CAS  PubMed  Google Scholar 

  3. Horsted F, West J, Grainge MJ. Risk of venous thromboembolism in patients with cancer: a systematic review and meta-analysis. PLoS Med. 2012;9, e1001275.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lee YG, Kim I, Lee E, Bang SM, Kang CH, Kim YT, et al. Risk factors and prognostic impact of venous thromboembolism in Asian patients with non-small cell lung cancer. Thromb Haemost. 2014;111:1112–20.

    Article  CAS  PubMed  Google Scholar 

  5. Walker AJ, Card TR, West J, Crooks C, Grainge MJ. Incidence of venous thromboembolism in patients with cancer—a cohort study using linked United Kingdom databases. Eur J Cancer. 2013;49:1404–13.

    Article  PubMed  Google Scholar 

  6. Alexander M, Kirsa S, Wolfe R, MacManus M, Ball D, Solomon B, et al. Thromboembolism in lung cancer—an area of urgent unmet need. Lung Cancer. 2014;84:275–80.

    Article  CAS  PubMed  Google Scholar 

  7. Huang H, Korn JR, Mallick R, Friedman M, Nichols C, Menzin J. Incidence of venous thromboembolism among chemotherapy-treated patients with lung cancer and its association with mortality: a retrospective database study. J Thromb Thrombolysis. 2012;34:446–56.

    Article  CAS  PubMed  Google Scholar 

  8. Chew HK, Davies AM, Wun T, Harvey D, Zhou H, White RH. The incidence of venous thromboembolism among patients with primary lung cancer. J Thromb Haemost. 2008;6:601–8.

    Article  CAS  PubMed  Google Scholar 

  9. Connolly GC, Menapace L, Safadjou S, Francis CW, Khorana AA. Prevalence and clinical significance of incidental and clinically suspected venous thromboembolism in lung cancer patients. Clin Lung Cancer. 2013;14:713–8.

    Article  PubMed  Google Scholar 

  10. Hicks LK, Cheung MC, Ding K, Hasan B, Seymour L, Le Maitre A, et al. Venous thromboembolism and nonsmall cell lung cancer: a pooled analysis of National Cancer Institute of Canada Clinical Trials Group trials. Cancer. 2009;115:5516–25.

    Article  PubMed  Google Scholar 

  11. Lee AY, Levine MN, Baker RI, Bowden C, Kakkar AK, Prins M, et al. Low-molecular-weight heparin versus a coumarin for the prevention of recurrent venous thromboembolism in patients with cancer. N Engl J Med. 2003;349:146–53.

    Article  CAS  PubMed  Google Scholar 

  12. Hull RD, Pineo GF, Brant RF, Mah AF, Burke N, Dear R, et al. Long-term low-molecular-weight heparin versus usual care in proximal-vein thrombosis patients with cancer. Am J Med. 2006;119:1062–72.

    Article  CAS  PubMed  Google Scholar 

  13. Rezende SM, Lijfering WM, Rosendaal FR, Cannegieter SC. Hematologic variables and venous thrombosis: red cell distribution width and blood monocyte count are associated with an increased risk. Haematologica. 2014;99:194–200.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Basavaraj MG, Braekkan SK, Brodin E, Osterud B, Hansen JB. Monocyte count and procoagulant functions are associated with risk of venous thromboembolism: the Tromso study. J Thromb Haemost. 2011;9:1673–6.

    Article  CAS  PubMed  Google Scholar 

  15. Rogacev KS, Cremers B, Zawada AM, Seiler S, Binder N, Ege P, et al. CD14++CD16+ monocytes independently predict cardiovascular events: a cohort study of 951 patients referred for elective coronary angiography. J Am Coll Cardiol. 2012;60:1512–20.

    Article  CAS  PubMed  Google Scholar 

  16. Rojnuckarin P, Uaprasert N, Sriuranpong V. Monocyte count associated with subsequent symptomatic venous thromboembolism (VTE) in hospitalized patients with solid tumors. Thromb Res. 2012;130:e279–82.

    Article  CAS  PubMed  Google Scholar 

  17. Khajuria A, Houston DS. Induction of monocyte tissue factor expression by homocysteine: a possible mechanism for thrombosis. Blood. 2000;96:966–72.

    CAS  PubMed  Google Scholar 

  18. von Bruhl ML, Stark K, Steinhart A, Chandraratne S, Konrad I, Lorenz M, et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med. 2012;209:819–35.

    Article  Google Scholar 

  19. Funderburg NT, Mayne E, Sieg SF, Asaad R, Jiang W, Kalinowska M, et al. Increased tissue factor expression on circulating monocytes in chronic HIV infection: relationship to in vivo coagulation and immune activation. Blood. 2010;115:161–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Le DT, Ho D, Olsen JO, Osterud B. Plasma and IgGs from patients with lupus anticoagulant induce tissue factor in monocytes: a possible risk factor for thrombosis. J Thromb Haemost. 2010;8:1861–3.

    Article  CAS  PubMed  Google Scholar 

  21. Huang CK, Pang H, Wang L, Niu Y, Luo J, Chang E, et al. New therapy via targeting androgen receptor in monocytes/macrophages to battle atherosclerosis. Hypertension. 2014;63:1345–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yu E, Calvert PA, Mercer JR, Harrison J, Baker L, Figg NL, et al. Mitochondrial DNA damage can promote atherosclerosis independently of reactive oxygen species through effects on smooth muscle cells and monocytes and correlates with higher-risk plaques in humans. Circulation. 2013;128:702–12.

    Article  CAS  PubMed  Google Scholar 

  23. McGuinness CL, Humphries J, Waltham M, Burnand KG, Collins M, Smith A. Recruitment of labelled monocytes by experimental venous thrombi. Thromb Haemost. 2001;85:1018–24.

    CAS  PubMed  Google Scholar 

  24. Singh I, Burnand KG, Collins M, Luttun A, Collen D, Boelhouwer B, et al. Failure of thrombus to resolve in urokinase-type plasminogen activator gene-knockout mice: rescue by normal bone marrow-derived cells. Circulation. 2003;107:869–75.

    Article  CAS  PubMed  Google Scholar 

  25. Henke PK, Varga A, De S, Deatrick CB, Eliason J, Arenberg DA, et al. Deep vein thrombosis resolution is modulated by monocyte CXCR2-mediated activity in a mouse model. Arterioscler Thromb Vasc Biol. 2004;24:1130–7.

    Article  CAS  PubMed  Google Scholar 

  26. Ali T, Humphries J, Burnand K, Sawyer B, Bursill C, Channon K, et al. Monocyte recruitment in venous thrombus resolution. J Vasc Surg. 2006;43:601–8.

    Article  PubMed  Google Scholar 

  27. Frantz S, Hofmann U, Fraccarollo D, Schafer A, Kranepuhl S, Hagedorn I, et al. Monocytes/macrophages prevent healing defects and left ventricular thrombus formation after myocardial infarction. FASEB J. 2013;27:871–81.

    Article  CAS  PubMed  Google Scholar 

  28. Melgarejo E, Medina MA, Sanchez-Jimenez F, Urdiales JL. Monocyte chemoattractant protein-1: a key mediator in inflammatory processes. Int J Biochem Cell Biol. 2009;41:998–1001.

    Article  CAS  PubMed  Google Scholar 

  29. O’Hayre M, Salanga CL, Handel TM, Allen SJ. Chemokines and cancer: migration, intracellular signalling and intercellular communication in the microenvironment. Biochem J. 2008;409:635–49.

    Article  PubMed  Google Scholar 

  30. Lievense LA, Bezemer K, Aerts JG, Hegmans JP. Tumor-associated macrophages in thoracic malignancies. Lung Cancer. 2013;80:256–62.

    Article  CAS  PubMed  Google Scholar 

  31. Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141:39–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer. 2004;4:71–8.

    Article  CAS  PubMed  Google Scholar 

  33. Noy R, Pollard JW. Tumor-associated macrophages: from mechanisms to therapy. Immunity. 2014;41:49–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dai F, Liu L, Che G, Yu N, Pu Q, Zhang S, et al. The number and microlocalization of tumor-associated immune cells are associated with patient’s survival time in non-small cell lung cancer. BMC Cancer. 2010;10:220.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Chung FT, Lee KY, Wang CW, Heh CC, Chan YF, Chen HW, et al. Tumor-associated macrophages correlate with response to epidermal growth factor receptor-tyrosine kinase inhibitors in advanced non-small cell lung cancer. Int J Cancer. 2012;131:E227–35.

    Article  CAS  PubMed  Google Scholar 

  36. Wilcox RA, Ristow K, Habermann TM, Inwards DJ, Micallef IN, Johnston PB, et al. The absolute monocyte count is associated with overall survival in patients newly diagnosed with follicular lymphoma. Leuk Lymphoma. 2012;53:575–80.

    Article  PubMed  Google Scholar 

  37. Bari A, Tadmor T, Sacchi S, Marcheselli L, Liardo EV, Pozzi S, et al. Monocytosis has adverse prognostic significance and impacts survival in patients with T-cell lymphomas. Leuk Res. 2013;37:619–23.

    Article  CAS  PubMed  Google Scholar 

  38. Wilcox RA, Ristow K, Habermann TM, Inwards DJ, Micallef IN, Johnston PB, et al. The absolute monocyte and lymphocyte prognostic score predicts survival and identifies high-risk patients in diffuse large-B-cell lymphoma. Leukemia. 2011;25:1502–9.

    Article  CAS  PubMed  Google Scholar 

  39. von Hohenstaufen KA, Conconi A, de Campos CP, Franceschetti S, Bertoni F, Margiotta Casaluci G, et al. Prognostic impact of monocyte count at presentation in mantle cell lymphoma. Br J Haematol. 2013;162:465–73.

    Article  Google Scholar 

  40. Koh YW, Kang HJ, Park C, Yoon DH, Kim S, Suh C, et al. The ratio of the absolute lymphocyte count to the absolute monocyte count is associated with prognosis in Hodgkin’s lymphoma: correlation with tumor-associated macrophages. Oncologist. 2012;17:871–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Koh YW, Shin SJ, Park C, Yoon DH, Suh C, Huh J. Absolute monocyte count predicts overall survival in mantle cell lymphomas: correlation with tumour-associated macrophages. Hematol Oncol. 2014;32:178–86.

    Article  CAS  PubMed  Google Scholar 

  42. Kim YK, Kim SH, Lee SD, Lee SA, Park SJ. Pretransplant absolute monocyte count in peripheral blood predicts posttransplant tumor prognosis in patients undergoing liver transplantation for hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int. 2014;13:250–8.

    Article  PubMed  Google Scholar 

  43. Lin GN, Jiang XM, Peng JW, Xiao JJ, Liu DY, Xia ZJ. Prognostic significance of the peripheral blood absolute monocyte count in patients with locally advanced or metastatic hepatocellular carcinoma receiving systemic chemotherapy. Asian Pac J Cancer Prev. 2014;15:6387–90.

    Article  PubMed  Google Scholar 

  44. Lin GN, Peng JW, Xiao JJ, Liu DY, Xia ZJ. Prognostic impact of circulating monocytes and lymphocyte-to-monocyte ratio on previously untreated metastatic non-small cell lung cancer patients receiving platinum-based doublet. Med Oncol. 2014;31:70.

    Article  PubMed  Google Scholar 

  45. Szkandera J, Gerger A, Liegl-Atzwanger B, Absenger G, Stotz M, Friesenbichler J, et al. The lymphocyte/monocyte ratio predicts poor clinical outcome and improves the predictive accuracy in patients with soft tissue sarcomas. Int J Cancer. 2014;135:362–70.

    Article  CAS  PubMed  Google Scholar 

  46. Secchiero P, Rimondi E, di Iasio MG, Agnoletto C, Melloni E, Volpi I, et al. C-Reactive protein downregulates TRAIL expression in human peripheral monocytes via an Egr-1-dependent pathway. Clin Cancer Res. 2013;19:1949–59.

    Article  CAS  PubMed  Google Scholar 

  47. Devaraj S, Jialal I. C-reactive protein polarizes human macrophages to an M1 phenotype and inhibits transformation to the M2 phenotype. Arterioscler Thromb Vasc Biol. 2011;31:1397–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Compliance with ethical standards

Conflicts of interest

None

Research involving human participants and/or animals

This study is retrospective analysis without any intervention related with humans. Therefore, the requirement of informed consent to participate is not applicable and waived in this type of study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyeong-Won Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Go, SI., Kim, R.B., Song, HN. et al. Prognostic significance of the absolute monocyte counts in lung cancer patients with venous thromboembolism. Tumor Biol. 36, 7631–7639 (2015). https://doi.org/10.1007/s13277-015-3475-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3475-2

Keywords

Navigation