Skip to main content

Advertisement

Log in

Platelet VEGF and serum TGF-β1 levels predict chemotherapy response in non-small cell lung cancer patients

  • Research Article
  • Published:
Tumor Biology

Abstract

We examined the levels of platelet vascular endothelial growth factor (VEGFPLT) and serum level of transforming growth factor beta 1 (TGF-β1) in non-small cell lung cancer (NSCLC) patients before and after chemotherapy to assess their clinical value as biomarkers. A total of 115 subjects were recruited at the First Hospital of Qinhuangdao between July 2012 and October 2013, including 65 NSCLC patients receiving chemotherapy (NSCLC group) and 50 healthy controls (control group). All NSCLC patients received gemcitabine plus cisplatin (GP regimen) for a total of two courses. VEGFPLT and serum TGF-β1 levels were measured before and after chemotherapy using enzyme-linked immunosorbent assay (ELISA). Platelet count was obtained using the Abbott CD-1600 auto blood analyzer. NSCLC group was categorized into complete response (CR) plus partial response (PR) group and stable disease (SD) plus progressive disease (PD) group based on the results of CT scans obtained 1 week after chemotherapy. Our results revealed that VEGFPLT and serum TGF-β1 levels were significantly higher in NSCLC group before chemotherapy, compared to the control group (VEGFPLT, 0.813 ± 0.072 vs. 0.547 ± 0.024; t = 26.48; P < 0.001 and TGF-β1, 46.00 ± 4.47 vs. 16.43 ± 2.12; t = 44.87; P < 0.001). Importantly, VEGFPLT and serum TGF-β1 levels decreased significantly after chemotherapy in CR + PR group in comparison with before chemotherapy (VEGFPLT, 0.453 ± 0.078 vs. 0.814 ± 0.127; t = 15.51; P < 0.001 and TGF-β1, 20.17 ± 2.43 vs. 42.13 ± 4.54; t = 27.31; P < 0.001). By contrast, VEGFPLT and serum TGF-β1 levels were markedly higher after chemotherapy in the SD + PD group in comparison with before chemotherapy (VEGFPLT, 0.816 ± 0.043 vs. 1.065 ± 0.016; t = 22.38; P < 0.001 and TGF-β1, 41.80 ± 5.46 vs. 45.83 ± 4.62; t = 2.32; P = 0. 03). Our results show that NSCLC patients exhibit high VEGFPLT and serum TGF-β1 levels, and VEGFPLT and TGF-β1 levels correlate with chemotherapy response to GP regimen. Therefore, VEGFPLT and serum TGF-β1 levels are valuable biomarkers in clinical monitoring of NSCLC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

NSCLC:

Non-small cell lung cancer

VEGF:

Vascular endothelial growth factor

TGF-β1:

Transforming growth factor beta 1

GP:

Gemcitabine plus cisplatin

RECIST:

Response evaluation criteria in solid tumors

CR:

Complete response

PD:

Progressive disease

SD:

Stable disease

References

  1. National Lung Screening Trial Research T, Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. New Engl J Med. 2011;365(5):395–409.

    Article  Google Scholar 

  2. Jia Y, Zang A, Shang Y, Yang H, Song Z, Wang Z, et al. Microrna-146a rs2910164 polymorphism is associated with susceptibility to non-small cell lung cancer in the chinese population. Med Oncol. 2014;31(10):194.

    Article  PubMed  Google Scholar 

  3. Wu H, Qiao N, Wang Y, Jiang M, Wang S, Wang C, et al. Association between the telomerase reverse transcriptase (tert) rs2736098 polymorphism and cancer risk: evidence from a case-control study of non-small-cell lung cancer and a meta-analysis. PLoS One. 2013;8(11):e76372.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lopez-Cima MF, Garcia-Perez J, Perez-Gomez B, Aragones N, Lopez-Abente G, Tardon A, et al. Lung cancer risk and pollution in an industrial region of northern Spain: a hospital-based case-control study. Int J Health Geogr. 2011;10:10.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Xu J, Yin Z, Gao W, Liu L, Yin Y, Liu P, et al. Genetic variation in a microrna-502 minding site in set8 gene confers clinical outcome of non-small cell lung cancer in a chinese population. PLoS One. 2013;8(10):e77024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Merrow CE, Wang IZ, Podgorsak MB. A dosimetric evaluation of VMAT for the treatment of non-small cell lung cancer. J Appl Clin Med Phys Am Coll Med Phys. 2013;14(1):4110.

    Google Scholar 

  7. Xu YH, Lu S. A meta-analysis of STAT3 and phospho-STAT3 expression and survival of patients with non-small-cell lung cancer. Eur J Surg Oncol : J Eur Soc Surg Oncol Br Assoc Surg Oncol. 2014;40(3):311–7.

    Article  CAS  Google Scholar 

  8. Tang S, Pan Y, Wang Y, Hu L, Cao S, Chu M, et al. Genome-wide association study of survival in early-stage non-small cell lung cancer. Ann Surg Oncol. 2015;22(2):630–5.

    Article  PubMed  Google Scholar 

  9. Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc. 2008;83(5):584–94.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dela Cruz CS, Tanoue LT, Matthay RA. Lung cancer: epidemiology, etiology, and prevention. Clin Chest Med. 2011;32(4):605–44.

    Article  PubMed  Google Scholar 

  11. Pao W, Girard N. New driver mutations in non-small-cell lung cancer. Lancet Oncol. 2011;12(2):175–80.

    Article  CAS  PubMed  Google Scholar 

  12. Albain KS, Swann RS, Rusch VW, Turrisi 3rd AT, Shepherd FA, Smith C, et al. Radiotherapy plus chemotherapy with or without surgical resection for stage III non-small-cell lung cancer: a phase III randomised controlled trial. Lancet. 2009;374(9687):379–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Aerts HJ, Bosmans G, van Baardwijk AA, Dekker AL, Oellers MC, Lambin P, et al. Stability of 18F-deoxyglucose uptake locations within tumor during radiotherapy for NSCLC: a prospective study. Int J Radiat Oncol Biol Phys. 2008;71(5):1402–7.

    Article  CAS  PubMed  Google Scholar 

  14. Wang Y, Nakayama M, Pitulescu ME, Schmidt TS, Bochenek ML, Sakakibara A, et al. Ephrin-b2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature. 2010;465(7297):483–6.

    Article  CAS  PubMed  Google Scholar 

  15. Rondina MT, Weyrich AS, Zimmerman GA. Platelets as cellular effectors of inflammation in vascular diseases. Circ Res. 2013;112(11):1506–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Semple JW, Italiano Jr JE, Freedman J. Platelets and the immune continuum. Nat Rev Immunol. 2011;11(4):264–74.

    Article  CAS  PubMed  Google Scholar 

  17. Bambace NM, Levis JE, Holmes CE. The effect of P2Y-mediated platelet activation on the release of VEGF and endostatin from platelets. Platelets. 2010;21(2):85–93.

    Article  CAS  PubMed  Google Scholar 

  18. Dobaczewski M, Chen W, Frangogiannis NG. Transforming growth factor (TGF)-beta signaling in cardiac remodeling. J Mol Cell Cardiol. 2011;51(4):600–6.

    Article  CAS  PubMed  Google Scholar 

  19. Halwani R, Al-Muhsen S, Al-Jahdali H, Hamid Q. Role of transforming growth factor-beta in airway remodeling in asthma. Am J Respir Cell Mol Biol. 2011;44(2):127–33.

    Article  CAS  PubMed  Google Scholar 

  20. Keunen O, Johansson M, Oudin A, Sanzey M, Rahim SA, Fack F, et al. Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proc Natl Acad Sci U S A. 2011;108(9):3749–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bierie B, Moses HL. Transforming growth factor beta (TGF-beta) and inflammation in cancer. Cytokine Growth Factor Rev. 2010;21(1):49–59.

    Article  CAS  PubMed  Google Scholar 

  22. Foreword IF. Target therapy for cancer: anti-cancer drugs targeting growth-factor signaling molecules. Biol Pharm Bull. 2011;34(12):1773.

    Article  Google Scholar 

  23. Lech-Maranda E, Bienvenu J, Broussais-Guillaumot F, Michallet AS, Warzocha K, Bilinski P, et al. Pretreatment levels of vascular endothelial growth factor in plasma predict a complete remission rate and time to relapse or progression in patients with diffuse large b-cell lymphoma. Arch Immunol Ther Exp. 2013;61(2):165–74.

    Article  CAS  Google Scholar 

  24. Wang ST, Liu JJ, Wang CZ, Lin B, Hao YY, Wang YF, et al. Expression and correlation of Lewis y antigen and TGF-beta1 in ovarian epithelial carcinoma. Oncol Rep. 2012;27(4):1065–71.

    PubMed  Google Scholar 

  25. Kim JW, Koh Y, Kim DW, Ahn YO, Kim TM, Han SW, et al. Clinical implications of VEGF, TGF-beta1, and IL-1beta in patients with advanced non-small cell lung cancer. Cancer Res Treat : Off J Korean Cancer Assoc. 2013;45(4):325–33.

    Article  Google Scholar 

  26. Fu ZZ, Gu T, Fu BH, Hua HX, Yang S, Zhang YQ, et al. Relationship of serum levels of VEGF and TGF-beta1 with radiosensitivity of elderly patients with unresectable non-small cell lung cancer. Tumour Biol : J Int Soc Oncodev Biol Med. 2014;35(5):4785–9.

    Article  CAS  Google Scholar 

  27. [the helsinki declaration of the world medical association (wma). Ethical principles of medical research involving human subjects]. Polski merkuriusz lekarski : organ Polskiego Towarzystwa Lekarskiego 2014;36(215):298-301.

  28. Fu ZZ, Sun XD, Li P, Zhang Z, Li GZ, Gu T, et al. Relationship between serum VEGF level and radiosensitivity of patients with nonsmall cell lung cancer among Asians: a meta-analysis. DNA Cell Biol. 2014;33(7):426–37.

    Article  CAS  PubMed  Google Scholar 

  29. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised recist guideline (version 1.1). Eur J Cancer. 2009;45(2):228–47.

    Article  CAS  PubMed  Google Scholar 

  30. Huang L, Jia J, Liu R. Decreased serum levels of the angiogenic factors VEGF and TGF-beta1 in Alzheimer’s disease and amnestic mild cognitive impairment. Neurosci Lett. 2013;550:60–3.

    Article  CAS  PubMed  Google Scholar 

  31. Xian LW, Li TP, Wei YE, Wu SP, Ma L. Relation of advanced oxidation protein products with VEGF and TGF-beta1 in colon cancer cells exposed to intermittent hypoxia. Nan fang yi ke da xue xue bao = J South Med Univ. 2011;31(4):619–23.

    CAS  Google Scholar 

  32. Seo HY, Park JM, Park KH, Kim SJ, Oh SC, Kim BS, et al. Prognostic significance of serum vascular endothelial growth factor per platelet count in unresectable advanced gastric cancer patients. Jpn J Clin Oncol. 2010;40(12):1147–53.

    Article  PubMed  Google Scholar 

  33. Peterson JE, Zurakowski D, Italiano Jr JE, Michel LV, Connors S, Oenick M, et al. VEGF, PF4 and PDGF are elevated in platelets of colorectal cancer patients. Angiogenesis. 2012;15(2):265–73.

    Article  CAS  PubMed  Google Scholar 

  34. Koukourakis MI, Limberis V, Tentes I, Kontomanolis E, Kortsaris A, Sivridis E, et al. Serum VEGF levels and tissue activation of VEGFR2/KDR receptors in patients with breast and gynecologic cancer. Cytokine. 2011;53(3):370–5.

    Article  CAS  PubMed  Google Scholar 

  35. Heng DY, Mackenzie MJ, Vaishampayan UN, Bjarnason GA, Knox JJ, Tan MH, et al. Primary anti-vascular endothelial growth factor (VEGF)-refractory metastatic renal cell carcinoma: clinical characteristics, risk factors, and subsequent therapy. Ann Oncol: Off J Eur Soc Med Oncol ESMO. 2012;23(6):1549–55.

    Article  CAS  Google Scholar 

  36. Shibuya M. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: a crucial target for anti- and pro-angiogenic therapies. Genes Cancer. 2011;2(12):1097–105.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Takai E, Tsukimoto M, Kojima S. TGF-beta1 downregulates COX-2 expression leading to decrease of PGE2 production in human lung cancer A549 cells, which is involved in fibrotic response to TGF-beta1. PLoS One. 2013;8(10):e76346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mumm JB, Oft M. Cytokine-based transformation of immune surveillance into tumor-promoting inflammation. Oncogene. 2008;27(45):5913–9.

    Article  CAS  PubMed  Google Scholar 

  39. Hou Y-L, Chen H, Dong Z-H, Xue C-J, Wu Y-F, Luo H-X, et al. Clinical significance of serum transforming growth factor-β1 in lung cancer. Cancer Epidemiol. 2013;37(5):750–3.

    Article  CAS  PubMed  Google Scholar 

  40. Kumar S, Guleria R, Singh V, Mohan A, Bharti AC, Das BC. Lack of utility of plasma TNF-alpha level in predicting therapeutic efficacy in patients with advanced non-small cell lung cancer. Cytokine. 2010;51(3):245–8.

    Article  CAS  PubMed  Google Scholar 

  41. Neil JR, Johnson KM, Nemenoff RA, Schiemann WP. Cox-2 inactivates smad signaling and enhances EMT stimulated by TGF-beta through a PGE2-dependent mechanisms. Carcinogenesis. 2008;29(11):2227–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kumar S, Guleria R, Mohan A, Singh V, Bharti AC, Das BC. Efficacy of plasma TGF-beta1 level in predicting therapeutic efficacy and prognosis in patients with advanced non-small cell lung cancer. Cancer Investig. 2011;29(3):202–7.

    Article  Google Scholar 

  43. Liu J, Liao S, Diop-Frimpong B, Chen W, Goel S, Naxerova K, et al. TGF-beta blockade improves the distribution and efficacy of therapeutics in breast carcinoma by normalizing the tumor stroma. Proc Natl Acad Sci U S A. 2012;109(41):16618–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Szczepanski MJ, Szajnik M, Welsh A, Whiteside TL, Boyiadzis M. Blast-derived microvesicles in sera from patients with acute myeloid leukemia suppress natural killer cell function via membrane-associated transforming growth factor-beta1. Haematologica. 2011;96(9):1302–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lim MJ, Lin T, Jakowlew SB. Signaling mechanisms of transforming growth factor-β (TGF-β) in cancer: TGF-β induces apoptosis in lung cells by a smad-dependent mechanism. Tumor Suppressor Genes 2012;145:123-125

  46. Maitah MY, Ali S, Ahmad A, Gadgeel S, Sarkar FH. Up-regulation of sonic hedgehog contributes to TGF-beta1-induced epithelial to mesenchymal transition in NSCLC cells. PLoS One. 2011;6(1):e16068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the reviewers for their helpful comments on this paper.

Conflicts of interests

None

Authors’ contributions

BH Fu and ZZ Fu designed, conceived, and supervised the study and performed the examination and the analysis. W Meng and T Gu conceived and supervised the study, performed the statistical analysis, and drafted the paper. XD Sun interpreted the results and revised the paper. Z Zhang designed the study and interpreted the results. All authors read and approved the final paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhan-Zhao Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, BH., Fu, ZZ., Meng, W. et al. Platelet VEGF and serum TGF-β1 levels predict chemotherapy response in non-small cell lung cancer patients. Tumor Biol. 36, 6477–6483 (2015). https://doi.org/10.1007/s13277-015-3338-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3338-x

Keywords

Navigation