Skip to main content
Log in

Ceramide production mediates cinobufotalin-induced growth inhibition and apoptosis in cultured hepatocellular carcinoma cells

  • Research Article
  • Published:
Tumor Biology

Abstract

Hepatocellular carcinoma (HCC) is a highly aggressive and lethal neoplasm with poor prognosis. The aim of this study is to investigate the anticancer activity of cinobufotalin, a bufadienolide isolated from toad venom, in cultured HCC cells, and to study the underlying mechanisms. We found that cinobufotalin (at nmol/L) significantly inhibited HCC cell growth and survival while inducing considerable cell apoptosis. Further, cinobufotalin inhibited sphingosine kinase 1 (SphK1) activity and induced pro-apoptotic ceramide production. Ceramide synthase-1 small hairpin RNA (shRNA)-depletion inhibited cinobufotalin-induced ceramide production and HCC cell apoptosis. On the other hand, the glucosylceramide synthase (GCS) inhibitor 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) facilitated cinobufotalin-induced ceramide production and cell apoptosis. SphK1 inhibitor II (SKI-II), similar to cinobufotalin, increased cellular ceramide level and promoted HCC cell apoptosis. Finally, we observed that cinobufotalin inactivated Akt-S6K1 signaling in HepG2 cells, which was again inhibited by ceramide synthase-1 shRNA-depletion. In conclusion, the results of this study suggest that cinobufotalin induces growth inhibition and apoptosis in cultured HCC cells through ceramide production. Cinobufotalin may be investigated as a novel anti-HCC agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CerS-1:

Ceramide synthase 1

HCC:

Hepatocellular carcinoma

SphK1:

Sphingosine kinase 1

References

  1. Tsanou E, Ioachim E, Stefaniotou M, Gorezis S, Charalabopoulos K, Bagli H, et al. Immunohistochemical study of angiogenesis and proliferative activity in epiretinal membranes. Int J Clin Pract. 2005;59:1157–61.

    Article  CAS  PubMed  Google Scholar 

  2. Zhou P, Zhao MW, Li XX, Yu WZ, Bian ZM. Sirna targeting mammalian target of rapamycin (mtor) attenuates experimental proliferative vitreoretinopathy. Curr Eye Res. 2007;32:973–84.

    Article  CAS  PubMed  Google Scholar 

  3. Seeliger H, Guba M, Kleespies A, Jauch KW, Bruns CJ. Role of mtor in solid tumor systems: a therapeutical target against primary tumor growth, metastases, and angiogenesis. Cancer Metastasis Rev. 2007;26:611–21.

    Article  PubMed  Google Scholar 

  4. Lewis GP, Chapin EA, Byun J, Luna G, Sherris D, Fisher SK. Muller cell reactivity and photoreceptor cell death are reduced after experimental retinal detachment using an inhibitor of the akt/mtor pathway. Invest Ophthalmol Vis Sci. 2009;50:4429–35.

    Article  PubMed  Google Scholar 

  5. Emam H, Zhao QL, Furusawa Y, Refaat A, Ahmed K, Kadowaki M, et al. Apoptotic cell death by the novel natural compound, cinobufotalin. Chem Biol Interact. 2012;199:154–60.

    Article  CAS  PubMed  Google Scholar 

  6. Li Z, Gao H, Wang J, Qu T, Chen L, Wang Z, et al. Inhibitory effect of total bufadienolides from toad venom against h22 tumor in mice and their metabolites. Zhongguo Zhong Yao Za Zhi. 2011;36:2987–93.

    CAS  PubMed  Google Scholar 

  7. Ogretmen B, Hannun YA. Updates on functions of ceramide in chemotherapy-induced cell death and in multidrug resistance. Drug Resist Updat. 2001;4:368–77.

    Article  CAS  PubMed  Google Scholar 

  8. Reynolds CP, Maurer BJ, Kolesnick RN. Ceramide synthesis and metabolism as a target for cancer therapy. Cancer Lett. 2004;206:169–80.

    Article  CAS  PubMed  Google Scholar 

  9. Zhu QY, Wang Z, Ji C, Cheng L, Yang YL, Ren J, et al. C6-ceramide synergistically potentiates the anti-tumor effects of histone deacetylase inhibitors via akt dephosphorylation and alpha-tubulin hyperacetylation both in vitro and in vivo. Cell Death Dis. 2011;2:e117.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kai S, Lu JH, Hui PP, Zhao H. Pre-clinical evaluation of cinobufotalin as a potential anti-lung cancer agent. Biochem Biophys Res Commun. 2014;452:768–74.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang YM, Zhang ZQ, Liu YY, Zhou X, Shi XH, Jiang Q, et al. Requirement of galphai1/3-gab1 signaling complex for keratinocyte growth factor-induced pi3k-akt-mtorc1 activation. J Invest Dermatol. 2015;135:181–91.

    Article  CAS  PubMed  Google Scholar 

  12. Yang L, Zheng LY, Tian Y, Zhang ZQ, Dong WL, Wang XF, Zhang XY, Cao C. C6 ceramide dramatically enhances docetaxel-induced growth inhibition and apoptosis in cultured breast cancer cells: a mechanism study. Exp Cell Res 2015.

  13. Yu T, Li J, Sun H. C6 ceramide potentiates curcumin-induced cell death and apoptosis in melanoma cell lines in vitro. Cancer Chemother Pharmacol. 2010;66:999–1003.

    Article  CAS  PubMed  Google Scholar 

  14. Taipale J, Beachy PA. The hedgehog and wnt signalling pathways in cancer. Nature. 2001;411:349–54.

    Article  CAS  PubMed  Google Scholar 

  15. Altura BM, Shah NC, Shah GJ, Zhang A, Li W, Zheng T, et al. Short-term mg deficiency upregulates protein kinase c isoforms in cardiovascular tissues and cells; relation to nf-kb, cytokines, ceramide salvage sphingolipid pathway and pkc-zeta: hypothesis and review. Int J Clin Exp Med. 2014;7:1–21.

    PubMed  PubMed Central  Google Scholar 

  16. Gong L, Yang B, Xu M, Cheng B, Tang X, Zheng P, et al. Bortezomib-induced apoptosis in cultured pancreatic cancer cells is associated with ceramide production. Cancer Chemother Pharmacol. 2014;73:69–77.

    Article  CAS  PubMed  Google Scholar 

  17. Merrill Jr AH, van Echten G, Wang E, Sandhoff K. Fumonisin b1 inhibits sphingosine (sphinganine) n-acyltransferase and de novo sphingolipid biosynthesis in cultured neurons in situ. J Biol Chem. 1993;268:27299–306.

    CAS  PubMed  Google Scholar 

  18. Soriano JM, Gonzalez L, Catala AI. Mechanism of action of sphingolipids and their metabolites in the toxicity of fumonisin b1. Prog Lipid Res. 2005;44:345–56.

    Article  CAS  PubMed  Google Scholar 

  19. Yao C, Wei JJ, Wang ZY, Ding HM, Li D, Yan SC, Yang YJ, Gu ZP. Perifosine induces cell apoptosis in human osteosarcoma cells: new implication for osteosarcoma therapy? Cell Biochem Biophys 2012.

  20. Ichihashi M. Uv-induced skin damage and photo-allergic disease. Arerugi. 2007;56:670–8.

    CAS  PubMed  Google Scholar 

  21. Chen JS, Wang Q, Fu XH, Huang XH, Chen XL, Cao LQ, et al. Involvement of pi3k/pten/akt/mtor pathway in invasion and metastasis in hepatocellular carcinoma: association with mmp-9. Hepatol Res. 2009;39:177–86.

    Article  CAS  PubMed  Google Scholar 

  22. Llovet JM, Bruix J. Molecular targeted therapies in hepatocellular carcinoma. Hepatology. 2008;48:1312–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ogretmen B, Hannun YA. Biologically active sphingolipids in cancer pathogenesis and treatment. Nat Rev Cancer. 2004;4:604–16.

    Article  CAS  PubMed  Google Scholar 

  24. Mathias S, Pena LA, Kolesnick RN. Signal transduction of stress via ceramide. Biochem J. 1998;335(Pt 3):465–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Veldman RJ, Klappe K, Hoekstra D, Kok JW. Metabolism and apoptotic properties of elevated ceramide in ht29rev cells. Biochem J. 1998;331(Pt 2):563–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Babia T, Veldman RJ, Hoekstra D, Kok JW. Modulation of carcinoembryonic antigen release by glucosylceramide–implications for ht29 cell differentiation. Eur J Biochem. 1998;258:233–42.

    Article  CAS  PubMed  Google Scholar 

  27. Bose R, Verheij M, Haimovitz-Friedman A, Scotto K, Fuks Z, Kolesnick R. Ceramide synthase mediates daunorubicin-induced apoptosis: an alternative mechanism for generating death signals. Cell. 1995;82:405–14.

    Article  CAS  PubMed  Google Scholar 

  28. Jaffrezou JP, Levade T, Bettaieb A, Andrieu N, Bezombes C, Maestre N, et al. Daunorubicin-induced apoptosis: triggering of ceramide generation through sphingomyelin hydrolysis. EMBO J. 1996;15:2417–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Myrick D, Blackinton D, Klostergaard J, Kouttab N, Maizel A, Wanebo H, et al. Paclitaxel-induced apoptosis in jurkat, a leukemic t cell line, is enhanced by ceramide. Leuk Res. 1999;23:569–78.

    Article  CAS  PubMed  Google Scholar 

  30. Yu T, Li J, Qiu Y, Sun H. 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (pdmp) facilitates curcumin-induced melanoma cell apoptosis by enhancing ceramide accumulation, jnk activation, and inhibiting pi3k/akt activation. Mol Cell Biochem. 2011;361:47–54.

    Article  PubMed  Google Scholar 

  31. Dijkhuis AJ, Klappe K, Jacobs S, Kroesen BJ, Kamps W, Sietsma H, et al. Pdmp sensitizes neuroblastoma to paclitaxel by inducing aberrant cell cycle progression leading to hyperploidy. Mol Cancer Ther. 2006;5:593–601.

    Article  CAS  PubMed  Google Scholar 

  32. Sietsma H, Veldman RJ, Kolk D, Ausema B, Nijhof W, Kamps W, et al. 1-phenyl-2-decanoylamino-3-morpholino-1-propanol chemosensitizes neuroblastoma cells for taxol and vincristine. Clin Cancer Res. 2000;6:942–8.

    CAS  PubMed  Google Scholar 

  33. Vadas M, Xia P, McCaughan G, Gamble J. The role of sphingosine kinase 1 in cancer: oncogene or non-oncogene addiction? Biochim Biophys Acta. 2008;1781:442–7.

    Article  CAS  PubMed  Google Scholar 

  34. Shida D, Takabe K, Kapitonov D, Milstien S, Spiegel S. Targeting sphk1 as a new strategy against cancer. Curr Drug Targets. 2008;9:662–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Maceyka M, Harikumar KB, Milstien S, Spiegel S. Sphingosine-1-phosphate signaling and its role in disease. Trends Cell Biol. 2012;22:50–60.

    Article  CAS  PubMed  Google Scholar 

  36. Stevenson CE, Takabe K, Nagahashi M, Milstien S, Spiegel S. Targeting sphingosine-1-phosphate in hematologic malignancies. Anticancer Agents Med Chem. 2011;11:794–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bao M, Chen Z, Xu Y, Zhao Y, Zha R, Huang S, et al. Sphingosine kinase 1 promotes tumour cell migration and invasion via the s1p/edg1 axis in hepatocellular carcinoma. Liver Int. 2012;32:331–8.

    Article  CAS  PubMed  Google Scholar 

  38. Hay N. The akt-mtor tango and its relevance to cancer. Cancer Cell. 2005;8:179–83.

    Article  CAS  PubMed  Google Scholar 

  39. Tanaka S, Arii S. Molecular targeted therapies in hepatocellular carcinoma. Semin Oncol. 2012;39:486–92.

    Article  CAS  PubMed  Google Scholar 

  40. Newell P, Villanueva A, Llovet JM. Molecular targeted therapies in hepatocellular carcinoma: from pre-clinical models to clinical trials. J Hepatol. 2008;49:1–5.

    Article  CAS  PubMed  Google Scholar 

  41. Altomare DA, Testa JR. Perturbations of the akt signaling pathway in human cancer. Oncogene. 2005;24:7455–64.

    Article  CAS  PubMed  Google Scholar 

  42. Dobrowsky RT, Kamibayashi C, Mumby MC, Hannun YA. Ceramide activates heterotrimeric protein phosphatase 2a. J Biol Chem. 1993;268:15523–30.

    CAS  PubMed  Google Scholar 

  43. Law B, Rossie S. The dimeric and catalytic subunit forms of protein phosphatase 2a from rat brain are stimulated by c2-ceramide. J Biol Chem. 1995;270:12808–13.

    Article  CAS  PubMed  Google Scholar 

  44. Wolff RA, Dobrowsky RT, Bielawska A, Obeid LM, Hannun YA. Role of ceramide-activated protein phosphatase in ceramide-mediated signal transduction. J Biol Chem. 1994;269:19605–9.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Jin or Xu-ming Bai.

Additional information

Long Cheng and Yuan-zheng Chen are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, L., Chen, Yz., Peng, Y. et al. Ceramide production mediates cinobufotalin-induced growth inhibition and apoptosis in cultured hepatocellular carcinoma cells. Tumor Biol. 36, 5763–5771 (2015). https://doi.org/10.1007/s13277-015-3245-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3245-1

Keywords

Navigation