Skip to main content

Advertisement

Log in

MAPK and JAK/STAT pathways targeted by miR-23a and miR-23b in prostate cancer: computational and in vitro approaches

  • Research Article
  • Published:
Tumor Biology

Abstract

The long-lasting inadequacy of existing treatments for prostate cancer has led to increasing efforts for developing novel therapies for this disease. MicroRNAs (miRNAs) are believed to have considerable therapeutic potential due to their role in regulating gene expression and cellular pathways. Identifying miRNAs that efficiently target genes and pathways is a key step in using these molecules for therapeutic purposes. Moreover, computational methods have been devised to help identify candidate miRNAs for each gene/pathway. MAPK and JAK/STAT pathways are known to have essential roles in cell proliferation and neoplastic transformation in different cancers including prostate cancer. Herein, we tried to identify miRNAs that target these pathways in the context of prostate cancer as therapeutic molecules. Genes involved in these pathways were analyzed with various algorithms to identify potentially targeting miRNAs. miR-23a and miR-23b were then selected as the best potential candidates that target a higher number of genes in these pathways with greater predictive scores. We then analyzed the expression of candidate miRNAs in LNCAP and PC3 cell lines as well as prostate cancer clinical samples. miR-23a and miR-23b showed a significant downregulation in cell line and tissue samples, a finding which is consistent with overactivation of these pathways in prostate cancer. In addition, we overexpressed miR-23a and miR-23b in LNCAP and PC3 cell lines, and these two miRNAs decreased IL-6R expression which has a critical role in these pathways. These results suggest the probability of utilizing miR-23a and miR-23b as therapeutic targets for the treatment of prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ferlay J SI, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray, F. Globocan 2012 v1.0, cancer incidence and mortality worldwide: IARC CancerBase no. 11; in Cancer IAfRo (ed), 2013.

  2. Center MM, Jemal A, Lortet-Tieulent J, Ward E, Ferlay J, Brawley O, et al. International variation in prostate cancer incidence and mortality rates. Eur Urol. 2012;61:1079–92.

    Article  PubMed  Google Scholar 

  3. Lassi K, Dawson NA. Drug development for metastatic castration-resistant prostate cancer: current status and future perspectives. Future Oncol. 2011;7:551–8.

    Article  CAS  PubMed  Google Scholar 

  4. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet. 2011;12:99–110.

    Article  CAS  PubMed  Google Scholar 

  6. Thorsen SB, Obad S, Jensen NF, Stenvang J, Kauppinen S. The therapeutic potential of microRNAs in cancer. Cancer J. 2012;18:275–84.

    Article  CAS  PubMed  Google Scholar 

  7. Gebert LF, Rebhan MA, Crivelli SE, Denzler R, Stoffel M, Hall J. Miravirsen (spc3649) can inhibit the biogenesis of mir-122. Nucleic Acids Res. 2014;42:609–21.

    Article  CAS  PubMed  Google Scholar 

  8. Bader AG, Brown D, Stoudemire J, Lammers P. Developing therapeutic microRNAs for cancer. Gene Ther. 2011;18:1121–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bader AG. Mir-34—a microRNA replacement therapy is headed to the clinic. Front Genet. 2012;3:120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Heyn H, Schreek S, Buurman R, Focken T, Schlegelberger B, Beger C. MicroRNA mir-548d is a superior regulator in pancreatic cancer. Pancreas. 2012;41:218–21.

    Article  CAS  PubMed  Google Scholar 

  11. Ritchie W, Rasko JE, Flamant S. MicroRNA target prediction and validation. Adv Exp Med Biol. 2013;774:39–53.

    Article  CAS  PubMed  Google Scholar 

  12. Vergoulis T, Vlachos IS, Alexiou P, Georgakilas G, Maragkakis M, Reczko M, et al. Tarbase 6.0: capturing the exponential growth of miRNA targets with experimental support. Nucleic Acids Res. 2012;40:D222–9.

    Article  CAS  PubMed  Google Scholar 

  13. Tan Gana NH, Victoriano AF, Okamoto T. Evaluation of online miRNA resources for biomedical applications. Genes Cells: Devoted Mol Cell Mech. 2012;17:11–27.

    Article  Google Scholar 

  14. da Silva HB, Amaral EP, Nolasco EL, de Victo NC, Atique R, Jank CC, et al. Dissecting major signaling pathways throughout the development of prostate cancer. Prostate Cancer. 2013;2013:920612.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wagner EF, Nebreda AR. Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer. 2009;9:537–49.

    Article  CAS  PubMed  Google Scholar 

  16. Bradham C, McClay DR. P38 MAPK in development and cancer. Cell Cycle. 2006;5:824–8.

    Article  CAS  PubMed  Google Scholar 

  17. Kinkade CW, Castillo-Martin M, Puzio-Kuter A, Yan J, Foster TH, Gao H, et al. Targeting AKT/mTOR and ERK MAPK signaling inhibits hormone-refractory prostate cancer in a preclinical mouse model. J Clin Invest. 2008;118:3051–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Gioeli D, Mandell JW, Petroni GR, Frierson Jr HF, Weber MJ. Activation of mitogen-activated protein kinase associated with prostate cancer progression. Cancer Res. 1999;59:279–84.

    CAS  PubMed  Google Scholar 

  19. Harrison DA. The jak/stat pathway. Cold Spring Harbor perspectives in biology 2012;4

  20. Kwon EM, Holt SK, Fu R, Kolb S, Williams G, Stanford JL, et al. Androgen metabolism and JAK/STAT pathway genes and prostate cancer risk. Cancer Epidemiol. 2012;36:347–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu X, He Z, Li CH, Huang G, Ding C, Liu H. Correlation analysis of JAK-STAT pathway components on prognosis of patients with prostate cancer. Pathol Oncol Res: POR. 2012;18:17–23.

    Article  PubMed  Google Scholar 

  22. Aalinkeel R, Hu Z, Nair BB, Sykes DE, Reynolds JL, Mahajan SD, et al. Genomic analysis highlights the role of the JAK-STAT signaling in the anti-proliferative effects of dietary flavonoid-‘ashwagandha’ in prostate cancer cells. Evid Based Complement Alternat Med: eCAM. 2010;7:177–87.

    Article  PubMed  Google Scholar 

  23. Chiromatzo AO, Oliveira TY, Pereira G, Costa AY, Montesco CA, Gras DE, et al. miRNApath: a database of miRNAs, target genes and metabolic pathways. Genet Mol Res: GMR. 2007;6:859–65.

    CAS  PubMed  Google Scholar 

  24. Vlachos IS, Kostoulas N, Vergoulis T, Georgakilas G, Reczko M, Maragkakis M, et al. DIANA miRPath v.2.0: investigating the combinatorial effect of microRNAs in pathways. Nucleic Acids Res. 2012;40:W498–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ritchie W, Flamant S, Rasko JE. mimiRNA: a microRNA expression profiler and classification resource designed to identify functional correlations between microRNAs and their targets. Bioinformatics. 2010;26:223–7.

    Article  CAS  PubMed  Google Scholar 

  26. Mohammadi-Yeganeh S, Paryan M, Mirab Samiee S, Soleimani M, Arefian E, Azadmanesh K, et al. Development of a robust, low cost stem-loop real-time quantification PCR technique for miRNA expression analysis. Mol Biol Rep. 2013;40:3665–74.

    Article  CAS  PubMed  Google Scholar 

  27. Aghaee-Bakhtiari SH, Arefian E, Soleimani M, Noorbakhsh F, Samiee SM, Fard-Esfahani P, Mahdian R. Reproducible and reliable real-time pcr assay to measure mature form of mir-141. Appl Immunohistochem Mol Morphol 2015;Epub Ahead of Print

  28. Bader AG, Brown D, Winkler M. The promise of microRNA replacement therapy. Cancer Res. 2010;70:7027–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H, et al. The microRNA mir-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med. 2011;17:211–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pulukuri SM, Gondi CS, Lakka SS, Jutla A, Estes N, Gujrati M, et al. RNA interference-directed knockdown of urokinase plasminogen activator and urokinase plasminogen activator receptor inhibits prostate cancer cell invasion, survival, and tumorigenicity in vivo. J Biol Chem. 2005;280:36529–40.

    Article  CAS  PubMed  Google Scholar 

  31. Walter BA, Valera VA, Pinto PA, Merino MJ. Comprehensive microRNA profiling of prostate cancer. J Cancer. 2013;4:350–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Coppola V, De Maria R, Bonci D. Micrornas and prostate cancer. Endocrine-related cancer 2010;17:F1-17

  33. Majid S, Dar AA, Saini S, Arora S, Shahryari V, Zaman MS, et al. miR-23b represses proto-oncogene Src kinase and functions as methylation-silenced tumor suppressor with diagnostic and prognostic significance in prostate cancer. Cancer Res. 2012;72:6435–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sun T, Yang M, Chen S, Balk S, Pomerantz M, Hsieh CL, et al. The altered expression of MiR-221/-222 and MiR-23b/-27b is associated with the development of human castration resistant prostate cancer. Prostate. 2012;72:1093–103.

    Article  CAS  PubMed  Google Scholar 

  35. Smith PC, Hobisch A, Lin DL, Culig Z, Keller ET. Interleukin-6 and prostate cancer progression. Cytokine Growth Factor Rev. 2001;12:33–40.

    Article  CAS  PubMed  Google Scholar 

  36. Culig Z, Steiner H, Bartsch G, Hobisch A. Interleukin-6 regulation of prostate cancer cell growth. J Cell Biochem. 2005;95:497–505.

    Article  CAS  PubMed  Google Scholar 

  37. Sakai I, Miyake H, Terakawa T, Fujisawa M. Inhibition of tumor growth and sensitization to chemotherapy by RNA interference targeting interleukin-6 in the androgen-independent human prostate cancer PC3 model. Cancer Sci. 2011;102:769–75.

    Article  CAS  PubMed  Google Scholar 

  38. Zhu LH, Liu T, Tang H, Tian RQ, Su C, Liu M, et al. MicroRNA-23a promotes the growth of gastric adenocarcinoma cell line MGC803 and downregulates interleukin-6 receptor. FEBS J. 2010;277:3726–34.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors appreciate the Pasteur Institute of Iran, Tehran, Iran for providing technical support. The authors are thankful to Vahid Haghpanah and Mohsen Khorashadizadeh for reading the manuscript and critical discussions. The authors are grateful to Zahra Masoumi and Fatemeh Kohram for editing the manuscript.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Funding

This study was funded by the Stem Cell Technology Research Center, Tehran, Iran.

Authors’ contributions

Seyed Hamid Aghaee-Bakhtiari carried out the practical tests and drafted the manuscript. Ehsan Arefian carried out the study design and drafting. Mahmood Naderi participated in the design of the study and drafting. Farshid Noorbakhsh participated in study design, data analysis, and draft preparation. Vahideh Nodouzi helped in clinical sample gathering and assisted in data analysis. Mojgan Asgari aided sample gathering and analyzed the stage of tumor samples. Pezhman Fard-Esfahani participated in data analysis and assisted in drafting the manuscript. Reza Mahdian helped in study design and aided in manuscript editing. Masoud Soleimani assisted in study design, data analysis, and draft preparation. All authors read and approved the final manuscript.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Soleimani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghaee-Bakhtiari, S.H., Arefian, E., Naderi, M. et al. MAPK and JAK/STAT pathways targeted by miR-23a and miR-23b in prostate cancer: computational and in vitro approaches. Tumor Biol. 36, 4203–4212 (2015). https://doi.org/10.1007/s13277-015-3057-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3057-3

Keywords

Navigation