Skip to main content

Advertisement

Log in

The methylation of a panel of genes differentiates low-grade from high-grade gliomas

  • Research Article
  • Published:
Tumor Biology

Abstract

Epigenetic changes play an important role in the pathogenesis of gliomas and have the potential to become clinically useful biomarkers. The aim of this study was the evaluation of the profile of promoter methylation of 13 genes selected based on their anticipated diagnostic and/or prognostic value. Methylation-specific PCR (MSP) was used to assess the methylation status of MGMT, ERCC1, hMLH1, ATM, CDKN2B (p15INK4B), p14ARF, CDKN2A (p16INK4A), RASSF1A, RUNX3, GATA6, NDRG2, PTEN, and RARβ in a subset of 95 gliomas of different grades. Additionally, the methylation status of MGMT and NDRG2 was analyzed using pyrosequencing (PSQ). The results revealed that the methylation index of individual glioma patients correlates with World Health Organization (WHO) tumor grade and patient’s age. RASSF1A, RUNX3, GATA6, and MGMT were most frequently methylated, whereas the INK4B-ARF-INK4A locus, PTEN, RARβ, and ATM were methylated to a lesser extent. ERCC1, hMLH1, and NDRG2 were unmethylated. RUNX3 methylation correlated with WHO tumor grade and patient’s age. PSQ confirmed significantly higher methylation levels of MGMT and NDRG2 as compared with normal, non-cancerous brain tissue. To conclude, DNA methylation of a whole panel of selected genes can serve as a tool for glioma aggressiveness prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114(2):97–109.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Cloughesy TF, Cavenee WK, Mischel PS. Glioblastoma: from molecular pathology to targeted treatment. Annu Rev Pathol. 2014;9:1–25.

    Article  CAS  PubMed  Google Scholar 

  3. Olar A, Aldape KD. Using the molecular classification of glioblastoma to inform personalized treatment. J Pathol. 2014;232(2):165–77.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Barciszewska AM, Nowak S, Naskręt-Barciszewska MZ. The degree of global DNA hypomethylation in peripheral blood correlates with that in matched tumor tissues in several neoplasia. PLoS One. 2014;9(3):e92599.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Majchrzak-Celińska A, Paluszczak J, Kleszcz R, Magiera M, Barciszewska AM, et al. Detection of MGMT, RASSF1A, p15INK4B, and p14ARF promoter methylation in circulating tumor-derived DNA of central nervous system cancer patients. J Appl Genet. 2013;54(3):335–44.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Li M, Li J, Liu L, Li W, Yang Y, Yuan J. MicroRNA in human glioma. Cancers (Basel). 2013;5(4):1306–31.

    Article  Google Scholar 

  7. Mummaneni P, Shord SS. Epigenetics and oncology. Pharmacotherapy. 2014;34(5):495–505.

    Article  CAS  PubMed  Google Scholar 

  8. Esteller M, Garcia-Foncillas J, Andion E, Goodman SN, Hidalgo OF, et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med. 2000;343(19):1350–4.

    Article  CAS  PubMed  Google Scholar 

  9. Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352(10):997–1003.

    Article  CAS  PubMed  Google Scholar 

  10. Hegi ME, Liu L, Herman JG, Stupp R, Wick W, et al. Correlation of O6-methylguanine methyltransferase (MGMT) promoter methylation with clinical outcomes in glioblastoma and clinical strategies to modulate MGMT activity. J Clin Oncol. 2008;26(25):4189–99.

    Article  CAS  PubMed  Google Scholar 

  11. Cankovic M, Nikiforova MN, Snuderl M, Adesina AM, Lindeman N, et al. The role of MGMT testing in clinical practice: a report of the association for molecular pathology. J Mol Diagn. 2013;15(5):539–55.

    Article  CAS  PubMed  Google Scholar 

  12. Liu ZG, Chen HY, Cheng JJ, Chen ZP, Li XN, et al. Relationship between methylation status of ERCC1 promoter and radiosensitivity in glioma cell lines. Cell Biol Int. 2009;33(10):1111–7.

    Article  CAS  PubMed  Google Scholar 

  13. Chen HY, Shao CJ, Chen FR, Kwan AL, Chen ZP. Role of ERCC1 promoter hypermethylation in drug resistance to cisplatin in human gliomas. Int J Cancer. 2010;126(8):1944–54.

    CAS  PubMed  Google Scholar 

  14. Gömöri E, Pál J, Mészáros I, Dóczi T, Matolcsy A. Epigenetic inactivation of the hMLH1 gene in progression of gliomas. Diagn Mol Pathol. 2007;16(2):104–7.

    Article  PubMed  Google Scholar 

  15. Roy K, Wang L, Makrigiorgos GM, Price BD. Methylation of the ATM promoter in glioma cells alters ionizing radiation sensitivity. Biochem Biophys Res Commun. 2006;344(3):821–6.

    Article  CAS  PubMed  Google Scholar 

  16. He J, Qiao JB, Zhu H. p14ARF promoter region methylation as a marker for gliomas diagnosis. Med Oncol. 2011;28(4):1218–24.

    Article  CAS  PubMed  Google Scholar 

  17. Wakabayashi T, Natsume A, Hatano H, Fujii M, Shimato S, et al. p16 promoter methylation in the serum as a basis for the molecular diagnosis of gliomas. Neurosurgery. 2009;64(3):455–61.

    Article  PubMed  Google Scholar 

  18. Avci CB, Dodurga Y, Susluer SY, Sýgva ZO, Yucebas M, et al. Promoter hypermethylation-mediated down-regulation of RUNX3 gene in human brain tumors. Ir J Med Sci. 2013;PMID: 23934435.

  19. Mueller W, Nutt CL, Ehrich M, Riemenschneider MJ, von Deimling A, et al. Downregulation of RUNX3 and TES by hypermethylation in glioblastoma. Oncogene. 2007;26(4):583–93.

    Article  CAS  PubMed  Google Scholar 

  20. Tepel M, Roerig P, Wolter M, Gutmann DH, Perry A, et al. Frequent promoter hypermethylation and transcriptional downregulation of the NDRG2 gene at 14q11.2 in primary glioblastoma. Int J Cancer. 2008;123(9):2080–6.

    Article  CAS  PubMed  Google Scholar 

  21. Skiriute D, Vaitkiene P, Saferis V, Asmoniene V, Skauminas K, et al. MGMT, GATA6, CD81, DR4, and CASP8 gene promoter methylation in glioblastoma. BMC Cancer. 2012;12:218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Piperi C, Themistocleous MS, Papavassiliou GA, Farmaki E, Levidou G, et al. High incidence of MGMT and RARbeta promoter methylation in primary glioblastomas: association with histopathological characteristics, inflammatory mediators and clinical outcome. Mol Med. 2010;16(1–2):1–9.

    Article  CAS  PubMed  Google Scholar 

  23. Mueller S, Phillips J, Onar-Thomas A, Romero E, Zheng S, et al. PTEN promoter methylation and activation of the PI3K/Akt/mTOR pathway in pediatric gliomas and influence on clinical outcome. Neuro Oncol. 2012;14(9):1146–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Herman JG, Graff JR, Myöhänen S, Nelkin BD, Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A. 1996;93(18):9821–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Håvik AB, Brandal P, Honne H, Dahlback HS, Scheie D, et al. MGMT promoter methylation in gliomas-assessment by pyrosequencing and quantitative methylation-specific PCR. J Transl Med. 2012;10:36.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chen PC, Tsai MH, Yip SK, Jou YC, Ng CF, et al. Distinct DNA methylation epigenotypes in bladder cancer from different Chinese sub-populations and its implication in cancer detection using voided urine. BMC Med Genomics. 2011;4:45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cencioni C, Spallotta F, Martelli F, Valente S, Mai A, et al. Oxidative stress and epigenetic regulation in ageing and age-related diseases. Int J Mol Sci. 2013;14(9):17643–63.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kuo LT, Tsai SY, Chang CC, Kuo KT, Huang AP, et al. Genetic and epigenetic alterations in primary-progressive paired oligodendroglial tumors. PLoS One. 2013;8:6.

    Google Scholar 

  29. Paluszczak J, Misiak P, Wierzbicka M, Woźniak A, Baer-Dubowska W. Frequent hypermethylation of DAPK, RARbeta, MGMT, RASSF1A and FHIT in laryngeal squamous cell carcinomas and adjacent normal mucosa. Oral Oncol. 2011;47(2):104–7.

    Article  CAS  PubMed  Google Scholar 

  30. Wemmert S, Bettscheider M, Alt S, Ketter R, Kammers K, et al. p15 promoter methylation—a novel prognostic marker in glioblastoma patients. Int J Oncol. 2009;34(6):1743–8.

    CAS  PubMed  Google Scholar 

  31. Klein O, Grignon Y, Civit T, Auque J, Marchal JC. Methylation status of RARbeta gene promoter in low and high grade cerebral glioma. Comparison with normal tissue. Immuno-histochemical study of nuclear RARbeta expression in low and high grade cerebral glioma cells. Comparison with normal cells. 48 tumors. Neurochirurgie. 2005;51(3–4 Pt 1):147–54.

    Article  CAS  PubMed  Google Scholar 

  32. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96.

    Article  CAS  PubMed  Google Scholar 

  33. van den Bent MJ, Dubbink HJ, Sanson M, van der Lee-Haarloo CR, Hegi M, et al. MGMT promoter methylation is prognostic but not predictive for outcome to adjuvant PCV chemotherapy in anaplastic oligodendroglial tumors: a report from EORTC Brain Tumor Group Study 26951. J Clin Oncol. 2009;27(35):5881–6.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Christians A, Hartmann C, Benner A, Meyer J, von Deimling A, et al. Prognostic value of three different methods of MGMT promoter methylation analysis in a prospective trial on newly diagnosed glioblastoma. PLoS One. 2012;7:3.

    Article  Google Scholar 

  35. Preusser M, Berghoff AS, Manzl C, Filipits M, Weinhäusel A, et al. Clinical Neuropathology practice news 1–2014: pyrosequencing meets clinical and analytical performance criteria for routine testing of MGMT promoter methylation status in glioblastoma. Clin Neuropathol. 2014;33(1):6–14.

    Article  PubMed  Google Scholar 

  36. Lusis EA, Watson MA, Chicoine MR, Lyman M, Roerig P, et al. Integrative genomic analysis identifies NDRG2 as a candidate tumor suppressor gene frequently inactivated in clinically aggressive meningioma. Cancer Res. 2005;65(16):7121–6.

    Article  CAS  PubMed  Google Scholar 

  37. Li W, Chu D, Chu X, Meng F, Wei D, et al. Decreased expression of NDRG2 is related to poor overall survival in patients with glioma. J Clin Neurosci. 2011;18(11):1534–7.

    Article  CAS  PubMed  Google Scholar 

  38. Piepoli A, Cotugno R, Merla G, Gentile A, Augello B, et al. Promoter methylation correlates with reduced NDRG2 expression in advanced colon tumour. BMC Med Genomics. 2009;2:11.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Science Centre of Poland grant no. N N405683240 and a scholarship support for Ph.D. students specializing in majors strategic for Greater Poland’s development, Sub-measure 8.2.2 Human Capital Operational Programme, co-financed by the European Union under the European Social Fund.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanda Baer-Dubowska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majchrzak-Celińska, A., Paluszczak, J., Szalata, M. et al. The methylation of a panel of genes differentiates low-grade from high-grade gliomas. Tumor Biol. 36, 3831–3841 (2015). https://doi.org/10.1007/s13277-014-3025-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-3025-3

Keywords

Navigation