Skip to main content

Advertisement

Log in

Expression of miRNAs in non-small-cell lung carcinomas and their association with clinicopathological features

  • Research Article
  • Published:
Tumor Biology

Abstract

Lung cancer is recognized as a leading cause of cancer-related deaths worldwide. Over the past several years, evidence emerged that microRNAs (miRNAs), a class of small non-coding RNA molecules regulating gene expression at posttranscriptional level, play an important role in cell functioning, as well as in human diseases. Here, we analyzed expression of miR-15a/16, miR-21, miR-34a, miR-126, miR-128, and miR-210 at transcriptional level in 30 non-small-cell lung carcinoma (NSCLC) tumor tissues compared to the matched adjacent normal tissues and their correlation with clinicopathological features of the patients. Samples were collected from the NSCLC patients undergoing surgery before radiotherapeutic or chemotherapeutic treatment. Expression levels of miRNAs were assessed by TaqMan RT-PCR assay. The data obtained in this study were processed using REST 2009 and SPSS statistical software. The graphs were designed by GraphPad prism 5.0. In tumor samples, we found downregulation of miR-15a/16 (50/83.3 %), miR-34a (83.3 %), miR-126 (70 %), and miR-128 (63.3 %). At the same time, miR-21 and miR-210 were upregulated by 53.3 and 66.6 % in cancer tissue versus matched adjacent normal tissues, respectively. No significant correlation was found between the expression levels of miR-15a/16, miR-21, miR-34a, miR-126, miR-128, and miR-210 and lymph node, tumor size, sex, and smoking. However, the study demonstrated a correlation between a change in expression of miR-15, miR-16, miR-34a, miR-126, and miR-210 compared to normal tissues and TNM staging (P < 0.05). Furthermore, miR-126 expression level was different in adenocarcinomas and squamous cell carcinoma (SCC) subtype (P < 0.1). Detailed analysis revealed significant change in expression of miR-15a/16, miR-34a, miR-126, and miR-210 in NSCLC tumor samples indicating involvement of these miRNAs in lung cancer pathogenesis. miR-210 demonstrated the most consistent increase in tumor tissues between different patients, suggesting its potential significance for NSCLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hammerschmidt S, Wirtz H. Lung cancer: current diagnosis and treatment. Dtsch Arzteblatt Int. 2009;106(49):809–18. quiz 19–20.

    Google Scholar 

  2. Boeri M, Pastorino U, Sozzi G. Role of microRNAs in lung cancer: microRNA signatures in cancer prognosis. Cancer J. 2012;18(3):268–74.

    Article  CAS  PubMed  Google Scholar 

  3. Melo SA, Esteller M. Dysregulation of microRNAs in cancer: playing with fire. FEBS Lett. 2011;585(13):2087–99.

    Article  CAS  PubMed  Google Scholar 

  4. Siomi H, Siomi MC. Posttranscriptional regulation of microRNA biogenesis in animals. Mol Cell. 2010;38(3):323–32.

    Article  CAS  PubMed  Google Scholar 

  5. Jay C, Nemunaitis J, Chen P, Fulgham P, Tong AW. miRNA profiling for diagnosis and prognosis of human cancer. DNA Cell Biol. 2007;26(5):293–300.

    Article  CAS  PubMed  Google Scholar 

  6. Garzon R, Calin GA, Croce CM. MicroRNAs in Cancer. Annu Rev Med. 2009;60:167–79.

    Article  CAS  PubMed  Google Scholar 

  7. Havens MA, Reich AA, Duelli DM, Hastings ML. Biogenesis of mammalian microRNAs by a non-canonical processing pathway. Nucleic Acids Res. 2012;40(10):4626–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yeo JH, Chong MM. Many routes to a micro RNA. IUBMB Life. 2011;63(11):972–8.

    Article  CAS  PubMed  Google Scholar 

  9. Cho WC. MicroRNAs in cancer—from research to therapy. Biochim Biophys Acta. 2010;1805(2):209–17.

    CAS  PubMed  Google Scholar 

  10. Du L, Pertsemlidis A. MicroRNAs and lung cancer: tumors and 22-mers. Cancer Metastasis Rev. 2010;29(1):109–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science. 2001;294(5543):853–8.

    Article  CAS  PubMed  Google Scholar 

  12. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A. 2005;102(39):13944–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hermeking H. The miR-34 family in cancer and apoptosis. Cell Death Differ. 2010;17(2):193–9.

    Article  CAS  PubMed  Google Scholar 

  14. Bhatt K, Zhou L, Mi QS, Huang S, She JX, Dong Z. MicroRNA-34a is induced via p53 during cisplatin nephrotoxicity and contributes to cell survival. Mol Med. 2010;16(9–10):409–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 2007;133(2):647–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S, et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene. 2008;27(15):2128–36.

    Article  CAS  PubMed  Google Scholar 

  17. Kumarswamy R, Volkmann I, Thum T. Regulation and function of miRNA-21 in health and disease. RNA Biol. 2011;8(5):706–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang X, Tang S, Le SY, Lu R, Rader JS, Meyers C, et al. Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PLoS One. 2008;3(7):e2557.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Harris TA, Yamakuchi M, Ferlito M, Mendell JT, Lowenstein CJ. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci U S A. 2008;105(5):1516–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Crawford M, Brawner E, Batte K, Yu L, Hunter MG, Otterson GA, et al. MicroRNA-126 inhibits invasion in non-small cell lung carcinoma cell lines. Biochem Biophys Res Commun. 2008;373(4):607–12.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang J, Du YY, Lin YF, Chen YT, Yang L, Wang HJ, et al. The cell growth suppressor, mir-126, targets IRS-1. Biochem Biophys Res Commun. 2008;377(1):136–40.

    Article  CAS  PubMed  Google Scholar 

  22. Weiss GJ, Bemis LT, Nakajima E, Sugita M, Birks DK, Robinson WA, et al. EGFR regulation by microRNA in lung cancer: correlation with clinical response and survival to gefitinib and EGFR expression in cell lines. Ann Oncol. 2008;19(6):1053–9.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang Y, Chao T, Li R, Liu W, Chen Y, Yan X, et al. MicroRNA-128 inhibits glioma cells proliferation by targeting transcription factor E2F3a. J Mol Med. 2009;87(1):43–51.

    Article  CAS  PubMed  Google Scholar 

  24. Evangelisti C, Florian MC, Massimi I, Dominici C, Giannini G, Galardi S, et al. MiR-128 up-regulation inhibits Reelin and DCX expression and reduces neuroblastoma cell motility and invasiveness. FASEB J. 2009;23(12):4276–87.

    Article  CAS  PubMed  Google Scholar 

  25. Khan AP, Poisson LM, Bhat VB, Fermin D, Zhao R, Kalyana-Sundaram S, et al. Quantitative proteomic profiling of prostate cancer reveals a role for miR-128 in prostate cancer. Mol Cell Proteomics. 2010;9(2):298–312.

    Article  CAS  PubMed  Google Scholar 

  26. Kotani A, Ha D, Schotte D, den Boer ML, Armstrong SA, Lodish HF. A novel mutation in the miR-128b gene reduces miRNA processing and leads to glucocorticoid resistance of MLL-AF4 acute lymphocytic leukemia cells. Cell Cycle. 2010;9(6):1037–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Adlakha YK, Saini N. miR-128 exerts pro-apoptotic effect in a p53 transcription-dependent and -independent manner via PUMA-Bak axis. Cell Death Dis. 2013;4:e542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Camps C, Buffa FM, Colella S, Moore J, Sotiriou C, Sheldon H, et al. hsa-miR-210 Is induced by hypoxia and is an independent prognostic factor in breast cancer. Clin Cancer Res. 2008;14(5):1340–8.

    Article  CAS  PubMed  Google Scholar 

  29. Huang X, Ding L, Bennewith KL, Tong RT, Welford SM, Ang KK, et al. Hypoxia-inducible mir-210 regulates normoxic gene expression involved in tumor initiation. Mol Cell. 2009;35(6):856–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Giannakakis A, Sandaltzopoulos R, Greshock J, Liang S, Huang J, Hasegawa K, et al. miR-210 links hypoxia with cell cycle regulation and is deleted in human epithelial ovarian cancer. Cancer Biol Ther. 2008;7(2):255–64.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang Z, Sun H, Dai H, Walsh RM, Imakura M, Schelter J, et al. MicroRNA miR-210 modulates cellular response to hypoxia through the MYC antagonist MNT. Cell Cycle. 2009;8(17):2756–68.

    Article  CAS  PubMed  Google Scholar 

  32. Kulshreshtha R, Ferracin M, Wojcik SE, Garzon R, Alder H, Agosto-Perez FJ, et al. A microRNA signature of hypoxia. Mol Cell Biol. 2007;27(5):1859–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005;33(20):e179.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 2001;25(4):402–8.

    Article  CAS  PubMed  Google Scholar 

  35. Klein U, Lia M, Crespo M, Siegel R, Shen Q, Mo T, et al. The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell. 2010;17(1):28–40.

    Article  CAS  PubMed  Google Scholar 

  36. Lerner M, Harada M, Loven J, Castro J, Davis Z, Oscier D, et al. DLEU2, frequently deleted in malignancy, functions as a critical host gene of the cell cycle inhibitory microRNAs miR-15a and miR-16-1. Exp Cell Res. 2009;315(17):2941–52.

    Article  CAS  PubMed  Google Scholar 

  37. Bandi N, Vassella E. miR-34a and miR-15a/16 are co-regulated in non-small cell lung cancer and control cell cycle progression in a synergistic and Rb-dependent manner. Mol Cancer. 2011;10:55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Barille-Nion S, Bah N, Vequaud E, Juin P. Regulation of cancer cell survival by BCL2 family members upon prolonged mitotic arrest: opportunities for anticancer therapy. Anticancer Res. 2012;32(10):4225–33.

    CAS  PubMed  Google Scholar 

  39. Michaud WA, Nichols AC, Mroz EA, Faquin WC, Clark JR, Begum S, et al. Bcl-2 blocks cisplatin-induced apoptosis and predicts poor outcome following chemoradiation treatment in advanced oropharyngeal squamous cell carcinoma. Clin Cancer Res. 2009;15(5):1645–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xue G, Yan HL, Zhang Y, Hao LQ, Zhu XT, Mei Q, et al. c-Myc-mediated repression of miR-15-16 in hypoxia is induced by increased HIF-2alpha and promotes tumor angiogenesis and metastasis by upregulating FGF2. Oncogene. 2014. doi:10.1038/onc.2014.82.

  41. Vaporidi K, Vergadi E, Kaniaris E, Hatziapostolou M, Lagoudaki E, Georgopoulos D, et al. Pulmonary microRNA profiling in a mouse model of ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol. 2012;303(3):L199–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fei J, Lan F, Guo M, Li Y, Liu Y. Inhibitory effects of anti-miRNA oligonucleotides (AMOs) on A549 cell growth. J Drug Target. 2008;16(9):688–93.

    Article  CAS  PubMed  Google Scholar 

  43. Lodygin D, Tarasov V, Epanchintsev A, Berking C, Knyazeva T, Korner H, et al. Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle. 2008;7(16):2591–600.

    Article  CAS  PubMed  Google Scholar 

  44. Izzotti A, Calin GA, Arrigo P, Steele VE, Croce CM, De Flora S. Downregulation of microRNA expression in the lungs of rats exposed to cigarette smoke. FASEB J. 2009;23(3):806–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sun T, Kong X, Du Y, Li Z. Aberrant microRNAs in pancreatic cancer: researches and clinical implications. Gastroenterol Res Pract. 2014;2014:386561.

    PubMed  PubMed Central  Google Scholar 

  46. Jamieson NB, Morran DC, Morton JP, Ali A, Dickson EJ, Carter CR, et al. MicroRNA molecular profiles associated with diagnosis, clinicopathologic criteria, and overall survival in patients with resectable pancreatic ductal adenocarcinoma. Clin Cancer Res. 2012;18(2):534–45.

    Article  CAS  PubMed  Google Scholar 

  47. Chen GQ, Zhao ZW, Zhou HY, Liu YJ, Yang HJ. Systematic analysis of microRNA involved in resistance of the MCF-7 human breast cancer cell to doxorubicin. Med Oncol. 2010;27:406–15.

    Article  CAS  PubMed  Google Scholar 

  48. Fujita Y, Kojima K, Hamada N, Ohhashi R, Akao Y, Nozawa Y, et al. Effects of miR-34a on cell growth and chemoresistance in prostate cancer PC3 cells. Biochem Biophys Res Commun. 2008;377:114–9.

    Article  CAS  PubMed  Google Scholar 

  49. Ji Q, Hao X, Zhang M, Tang W, Yang M, Li L, et al. MicroRNA miR-34a inhibits human panceratic cancer tumor-initiating cells. PLoS One. 2009;4:e6816.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Chardin P, Tavitian A. The ral gene: a new ras related gene isolated by the use of a synthetic probe. EMBO J. 1986;5(9):2203–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Li K, Li Z, Zhao N, Xu Y, Liu Y, Zhou Y, et al. Functional analysis of microRNA and transcription factor synergistic regulatory network based on identifying regulatory motifs in non-small cell lung cancer. BMC Syst Biol. 2013;7:122.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Donnem T, Lonvik K, Eklo K, Berg T, Sorbye SW, Al-Shibli K, et al. Independent and tissue-specific prognostic impact of miR-126 in nonsmall cell lung cancer: coexpression with vascular endothelial growth factor-A predicts poor survival. Cancer. 2011;117(14):3193–200.

    Article  CAS  PubMed  Google Scholar 

  53. Tavazoie SF, Alarcon C, Oskarsson T, Padua D, Wang Q, Bos PD, et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature. 2008;451(7175):147–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Feng R, Chen X, Yu Y, Su L, Yu B, Li J, et al. miR-126 functions as a tumour suppressor in human gastric cancer. Cancer Lett. 2010;298(1):50–63.

    Article  CAS  PubMed  Google Scholar 

  55. Hansen TF, Sorensen FB, Lindebjerg J, Jakobsen A. The predictive value of microRNA-126 in relation to first line treatment with capecitabine and oxaliplatin in patients with metastatic colorectal cancer. BMC Cancer. 2012;12:83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sun X, Liu Z, Yang Z, Xiao L, Wang F, He Y, et al. Association of microRNA-126 expression with clinicopathological features and the risk of biochemical recurrence in prostate cancer patients undergoing radical prostatectomy. Diagn Pathol. 2013;8:208.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Papagiannakopoulos T, Friedmann-Morvinski D, Neveu P, Dugas JC, Gill RM, Huillard E, et al. Pro-neural miR-128 is a glioma tumor suppressor that targets mitogenic kinases. Oncogene. 2012;31(15):1884–95.

    Article  CAS  PubMed  Google Scholar 

  58. Liu Y, Zhang N, Wang Y, Xu M, Liu N, Pang X, et al. Zinc finger E-box binding homeobox 1 promotes invasion and bone metastasis of small cell lung cancer in vitro and in vivo. Cancer Sci. 2012;103(8):1420–8.

    Article  CAS  PubMed  Google Scholar 

  59. Kurashige J, Kamohara H, Watanabe M, Hiyoshi Y, Iwatsuki M, Tanaka Y, et al. MicroRNA-200b regulates cell proliferation, invasion, and migration by directly targeting ZEB2 in gastric carcinoma. Ann Surg Oncol. 2012;19 Suppl 3:S656–64.

    Article  PubMed  Google Scholar 

  60. Venkataraman S, Alimova I, Fan R, Harris P, Foreman N, Vibhakar R. MicroRNA 128a increases intracellular ROS level by targeting Bmi-1 and inhibits medulloblastoma cancer cell growth by promoting senescence. PLoS One. 2010;5(6):e10748.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Adlakha YK, Saini N. MicroRNA-128 downregulates Bax and induces apoptosis in human embryonic kidney cells. Cell Mol Life Sci. 2011;68(8):1415–28.

    Article  CAS  PubMed  Google Scholar 

  62. Cho WC, Chow AS, Au JS. MiR-145 inhibits cell proliferation of human lung adenocarcinoma by targeting EGFR and NUDT1. RNA Biol. 2011;8(1):125–31.

    Article  CAS  PubMed  Google Scholar 

  63. Perry MM, Williams AE, Tsitsiou E, Larner-Svensson HM, Lindsay MA. Divergent intracellular pathways regulate interleukin-1beta-induced miR-146a and miR-146b expression and chemokine release in human alveolar epithelial cells. FEBS Lett. 2009;583(20):3349–55.

    Article  CAS  PubMed  Google Scholar 

  64. Puissegur MP, Mazure NM, Bertero T, Pradelli L, Grosso S, Robbe-Sermesant K, et al. miR-210 is overexpressed in late stages of lung cancer and mediates mitochondrial alterations associated with modulation of HIF-1 activity. Cell Death Differ. 2011;18(3):465–78.

    Article  CAS  PubMed  Google Scholar 

  65. Grosso S, Doyen J, Parks SK, Bertero T, Paye A, Cardinaud B, et al. MiR-210 promotes a hypoxic phenotype and increases radioresistance in human lung cancer cell lines. Cell Death Dis. 2013;4:e544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Duregon E, Rapa I, Votta A, Giorcelli J, Daffara F, Terzolo M, et al. MicroRNA expression patterns in adrenocortical carcinoma variants and clinical pathologic correlations. Hum Pathol. 2014;45(8):1555–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by grants Pasteur Institute of Iran and NRITLD of Shahid Beheshti University of Medical Sciences, the Swedish and the Stockholm Cancer Societies.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Karimipoor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tafsiri, E., Darbouy, M., Shadmehr, M.B. et al. Expression of miRNAs in non-small-cell lung carcinomas and their association with clinicopathological features. Tumor Biol. 36, 1603–1612 (2015). https://doi.org/10.1007/s13277-014-2755-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2755-6

Keywords

Navigation