Skip to main content

Advertisement

Log in

Identification of microRNA-93 as a functional dysregulated miRNA in triple-negative breast cancer

  • Research Article
  • Published:
Tumor Biology

Abstract

MicroRNAs (miRNAs) are widely recognized as key players in cancer progression and drug resistance, but less is known about the role of miRNAs in triple-negative (estrogen receptor, progesterone receptor, and HER-2/neu) breast cancer (TNBC). The aim of the present study was to examine the expression profile of miRNAs and to explore their possible roles in TNBC. Differentially expressed miRNAs were identified by miRNA microarray and verified by quantitative real-time polymerase chain reaction. The expression of miR-93 was assessed by in situ hybridization in 119 cases of breast cancer. Cell proliferation potential was examined by MTT assay. Cell migration and invasion abilities were evaluated by a wound healing assay and transwell invasion or migration assay. Seven upregulated and ten downregulated miRNAs in TNBC were identified. The miR-93 expression level in TNBC tissues was significantly higher than that in non-triple-negative breast cancer tissues. The potentials of proliferation, invasion, and metastasis in breast cancer MCF-7 cells were promoted by ectopic transfection of miR-93. Our study found several distinct differentially expressed miRNAs in TNBC, as compared to non-triple-negative breast cancer. Among them, miR-93 may be considered as a biomarker associated with the biological and clinical characteristics of human TNBC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bertheau P, Turpin E, Rickman DS, Espie M, de Reynies A, Feugeas JP, et al. Exquisite sensitivity of tp53 mutant and basal breast cancers to a dose-dense epirubicin-cyclophosphamide regimen. PLoS Med. 2007;4:e90.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Carey LA, Dees EC, Sawyer L, Gatti L, Moore DT, Collichio F, et al. The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res. 2007;13:2329–34.

    Article  CAS  PubMed  Google Scholar 

  3. Nam BH, Kim SY, Han HS, Kwon Y, Lee KS, Kim TH, et al. Breast cancer subtypes and survival in patients with brain metastases. Breast Cancer Res. 2008;10:R20.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rakha EA, Reis-Filho JS, Ellis IO. Basal-like breast cancer: a critical review. J Clin Oncol. 2008;26:2568–81.

    Article  PubMed  Google Scholar 

  5. Schneider BP, Winer EP, Foulkes WD, Garber J, Perou CM, Richardson A, et al. Triple-negative breast cancer: risk factors to potential targets. Clin Cancer Res. 2008;14:8010–8.

    Article  CAS  PubMed  Google Scholar 

  6. Cho WC. OncomiRs: the discovery and progress of microRNAs in cancers. Mol Cancer. 2007;6:60.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

    Article  CAS  PubMed  Google Scholar 

  8. Lee DY, Shatseva T, Jeyapalan Z, Du WW, Deng Z, Yang BB. A 3′-untranslated region (3′UTR) induces organ adhesion by regulating miR-199a* functions. PLoS One. 2009;4:e4527.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jeyapalan Z, Deng Z, Shatseva T, Fang L, He C, Yang BB. Expression of cd44 3′-untranslated region regulates endogenous microRNA functions in tumorigenesis and angiogenesis. Nucleic Acids Res. 2011;39:3026–41.

    Article  CAS  PubMed  Google Scholar 

  10. Fish JE, Santoro MM, Morton SU, Yu S, Yeh RF, Wythe JD, et al. Mir-126 regulates angiogenic signaling and vascular integrity. Dev Cell. 2008;15:272–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang S, Aurora AB, Johnson BA, Qi X, McAnally J, Hill JA, et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell. 2008;15:261–71.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Viticchie G, Lena AM, Latina A, Formosa A, Gregersen LH, Lund AH, et al. Mir-203 controls proliferation, migration and invasive potential of prostate cancer cell lines. Cell Cycle. 2011;10:1121–31.

    Article  CAS  PubMed  Google Scholar 

  13. Shatseva T, Lee DY, Deng Z, Yang BB. MicroRNA miR-199a-3p regulates cell proliferation and survival by targeting caveolin-2. J Cell Sci. 2011;124:2826–36.

    Article  CAS  PubMed  Google Scholar 

  14. Kahai S, Lee SC, Lee DY, Yang J, Li M, Wang CH, et al. MicroRNA miR-378 regulates nephronectin expression modulating osteoblast differentiation by targeting galnt-7. PLoS One. 2009;4:e7535.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wang CH, Lee DY, Deng Z, Jeyapalan Z, Lee SC, Kahai S, et al. MicroRNA miR-328 regulates zonation morphogenesis by targeting cd44 expression. PLoS One. 2008;3:e2420.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Shan SW, Lee DY, Deng Z, Shatseva T, Jeyapalan Z, Du WW, et al. MicroRNA miR-17 retards tissue growth and represses fibronectin expression. Nat Cell Biol. 2009;11:1031–8.

    Article  CAS  PubMed  Google Scholar 

  17. Nohata N, Hanazawa T, Enokida H, Seki N. MicroRNA-1/133a and microRNA-206/133b clusters: dysregulation and functional roles in human cancers. Oncotarget. 2012;3:9–21.

    PubMed  PubMed Central  Google Scholar 

  18. Fang L, Deng Z, Shatseva T, Yang J, Peng C, Du WW, et al. MicroRNA miR-93 promotes tumor growth and angiogenesis by targeting integrin-beta8. Oncogene. 2011;30:806–21.

    Article  CAS  PubMed  Google Scholar 

  19. Luo L, Ye G, Nadeem L, Fu G, Yang BB, Honarparvar E, et al. MicroRNA-378a-5p promotes trophoblast cell survival, migration and invasion by targeting nodal. J Cell Sci. 2012;125:3124–32.

    Article  CAS  PubMed  Google Scholar 

  20. Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007;449:682–8.

    Article  CAS  PubMed  Google Scholar 

  21. Huang Q, Gumireddy K, Schrier M, le Sage C, Nagel R, Nair S, et al. The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol. 2008;10:202–10.

    Article  CAS  PubMed  Google Scholar 

  22. Drakaki A, Iliopoulos D. MicroRNA gene networks in oncogenesis. Curr Genomics. 2009;10:35–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stenvang J, Silahtaroglu AN, Lindow M, Elmen J, Kauppinen S. The utility of LNA in microRNA-based cancer diagnostics and therapeutics. Semin Cancer Biol. 2008;18:89–102.

    Article  CAS  PubMed  Google Scholar 

  24. Esquela-Kerscher A, Slack FJ. OncomiRs—microRNAs with a role in cancer. Nat Rev Cancer. 2006;6:259–69.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang W, Dahlberg JE, Tam W. MicroRNAs in tumorigenesis: a primer. Am J Pathol. 2007;171:728–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gumireddy K, Li A, Gimotty PA, Klein-Szanto AJ, Showe LC, Katsaros D, et al. Klf17 is a negative regulator of epithelial-mesenchymal transition and metastasis in breast cancer. Nat Cell Biol. 2009;11:1297–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Johnson CD, Esquela-Kerscher A, Stefani G, Byrom M, Kelnar K, Ovcharenko D, et al. The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res. 2007;67:7713–22.

    Article  CAS  PubMed  Google Scholar 

  28. Shi L, Cheng Z, Zhang J, Li R, Zhao P, Fu Z, et al. Hsa-miR-181a and hsa-miR-181b function as tumor suppressors in human glioma cells. Brain Res. 2008;1236:185–93.

    Article  CAS  PubMed  Google Scholar 

  29. Li Y, Tan W, Neo TW, Aung MO, Wasser S, Lim SG, et al. Role of the miR-106b-25 microRNA cluster in hepatocellular carcinoma. Cancer Sci. 2009;100:1234–42.

    Article  CAS  PubMed  Google Scholar 

  30. Matsubara H, Takeuchi T, Nishikawa E, Yanagisawa K, Hayashita Y, Ebi H, et al. Apoptosis induction by antisense oligonucleotides against miR-17-5p and miR-20a in lung cancers overexpressing miR-17-92. Oncogene. 2007;26:6099–105.

    Article  CAS  PubMed  Google Scholar 

  31. Mu P, Han YC, Betel D, Yao E, Squatrito M, Ogrodowski P, et al. Genetic dissection of the miR-17~92 cluster of microRNAs in Myc-induced b-cell lymphomas. Genes Dev. 2009;23:2806–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Visser S, Yang X. LATS tumor suppressor: a new governor of cellular homeostasis. Cell Cycle. 2010;9:3892–903.

    Article  CAS  PubMed  Google Scholar 

  33. Fang L, Du WW, Yang W, Rutnam ZJ, Peng C, Li H, et al. MiR-93 enhances angiogenesis and metastasis by targeting LATS2. Cell Cycle. 2012;11:4352–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu S, Patel SH, Ginestier C, Ibarra I, Martin-Trevino R, Bai S, et al. MicroRNA93 regulates proliferation and differentiation of normal and malignant breast stem cells. PLoS Genet. 2012;8:e1002751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Medjaden Bioscience Limited for assisting in the preparation of this manuscript.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuquan Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Xu, J., Wu, Y. et al. Identification of microRNA-93 as a functional dysregulated miRNA in triple-negative breast cancer. Tumor Biol. 36, 251–258 (2015). https://doi.org/10.1007/s13277-014-2611-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2611-8

Keywords

Navigation