Skip to main content
Log in

Mitochondrial DNA reduced by hypoxic conditions in three-dimensional (3D) spheroid cell cultures

  • Research Article
  • Published:
Tumor Biology

Abstract

Three-dimensional (3D) cell culture reflects many of the important properties of solid tumors, such as the inadequate diffusion of oxygen that results in hypoxia. To understand the mitochondrial states in cancer, we performed comparisons of the levels of mitochondrial DNA (mtDNA), fusion- and fission-related mitochondrial messenger RNA (mRNA), and mitochondrial protein expression between monolayer (2D)- and 3D-cultured cancer cells. The mtDNA levels were observed to be significantly lower in the 3D cells compared with the monolayer cells. In contrast, the differences in expression of the mitochondrial fusion- and fission-related mRNAs and mitochondrial proteins between 2D- and 3D-cultured cancer cells were not significant, as shown by real-time PCR and immunoblot analysis. Therefore, although mtDNA levels decrease as a whole during 3D culture, this does not appear to affect the fusion and fission of individual mitochondria. Indeed, the factors regulating mitochondrial dynamics during 3D cell culture remain unclear. This study provides the basis for future, more detailed studies on the regulation of mtDNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Côté HC, Gerschenson M, Walker UA, Miro O, Garrabou G, Hammond E, et al. Quality assessment of human mitochondrial DNA quantification: MITONAUTS, an international multicentre survey. Mitochondrion. 2011;11:520–7.

    Article  Google Scholar 

  2. Andreu AL, Martinez R, Marti R, García-Arumí E. Quantification of mitochondrial DNA copy number: pre-analytical factors. Mitochondrion. 2009;9:242–6.

    Article  CAS  Google Scholar 

  3. Cui H, Huang P, Wang Z, Zhang Y, Zhang Z, Xu W, et al. Association of decreased mitochondrial DNA content with the progression of colorectal cancer. BMC Cancer. 2013;13:110.

    Article  CAS  Google Scholar 

  4. Chatterjee A, Dasgupta S, Sidransky D. Mitochondrial subversion in cancer. Cancer Prev Res (Phila). 2011;4:638–54.

    Article  CAS  Google Scholar 

  5. Jones JB, Song JJ, Hempen PM, Parmigiani G, Hruban RH, Kern SE. Detection of mitochondrial DNA mutations in pancreatic cancer offers a “mass”-ive advantage over detection of nuclear DNA mutations. Cancer Res. 2001;61:1299–304.

    CAS  PubMed  Google Scholar 

  6. Simonnet H, Alazard N, Pfeiffer K, Gallou C, Béroud C, Demont J, et al. Low mitochondrial respiratory chain content correlates with tumor aggressiveness in renal cell carcinoma. Carcinogenesis. 2002;23:759–68.

    Article  CAS  Google Scholar 

  7. Lee HC, Li SH, Lin JC, Wu CC, Yeh DC, Wei YH. Somatic mutations in the d-loop and decrease in the copy number of mitochondrial DNA in human hepatocellular carcinoma. Mutat Res. 2004;547:71–8.

    Article  CAS  Google Scholar 

  8. Wong LJ, Tan DJ, Bai RK, Yeh KT, Chang J. Molecular alterations in mitochondrial DNA of hepatocellular carcinomas: is there a correlation with clinicopathological profile? J Med Genet. 2004;41:e65.

    Article  Google Scholar 

  9. Wang Y, Liu VW, Xue WC, Cheung AN, Ngan HY. Association of decreased mitochondrial DNA content with ovarian cancer progression. Br J Cancer. 2006;95:1087–91.

    Article  CAS  Google Scholar 

  10. Wu CW, Yin PH, Hung WY, Li AF, Li SH, Chi CW, et al. Mitochondrial DNA mutations and mitochondrial DNA depletion in gastric cancer. Gene Chromosome Cancer. 2005;44:19–28.

    Article  CAS  Google Scholar 

  11. Hoppins S, Lackner L, Nunnari J. The machines that divide and fuse mitochondria. Annu Rev Biochem. 2007;76:751–80.

    Article  CAS  Google Scholar 

  12. Chan DC. Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol. 2006;22:79–99.

    Article  CAS  Google Scholar 

  13. Otera H, Mihara K. Molecular mechanisms and physiologic functions of mitochondrial dynamics. J Biochem. 2011;149:241–51.

    Article  CAS  Google Scholar 

  14. Rehman J, Zhang HJ, Toth PT, Zhang Y, Marsboom G, Hong Z, et al. Inhibition of mitochondrial fission prevents cell cycle progression in lung cancer. FASEB J. 2012;26:2175–86.

    Article  CAS  Google Scholar 

  15. Nijtmans LG, de Jong L, Artal Sanz M, Coates PJ, Berden JA, Back JW, et al. Prohibitins act as a membrane-bound chaperone for the stabilization of mitochondrial proteins. EMBO J. 2000;19:2444–51.

    Article  CAS  Google Scholar 

  16. Kasashima K, Sumitani M, Satoh M, Endo H. Human prohibitin 1 maintains the organization and stability of the mitochondrial nucleoids. Exp Cell Res. 2008;314:988–96.

    Article  CAS  Google Scholar 

  17. Kakehashi A, Ishii N, Shibata T, Wei M, Okazaki E, Tachibana T, et al. Mitochondrial prohibitins and septin 9 are implicated in the onset of rat hepatocarcinogenesis. Toxicol Sci. 2011;119:61–72.

    Article  CAS  Google Scholar 

  18. Kathiria AS, Neumann WL, Rhees J, Hotchkiss E, Cheng Y, Genta RM, et al. Prohibitin attenuates colitis-associated tumorigenesis in mice by modulating p53 and STAT3 apoptotic responses. Cancer Res. 2012;72:5778–89.

    Article  CAS  Google Scholar 

  19. Thomlinson RH, Gray LH. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer. 1955;9:539–49.

    Article  CAS  Google Scholar 

  20. Rampling R, Cruickshank G, Lewis AD, Fitzsimmons SA, Workman P. Direct measurement of pO2 distribution and bioreductive enzymes in human malignant brain tumors. Int J Radiat Oncol Biol Phys. 1994;29:427–31.

    Article  CAS  Google Scholar 

  21. Kim JW, Ho WJ, Wu BM. The role of the 3D environment in hypoxia-induced drug and apoptosis resistance. Anticancer Res. 2011;31:3237–45.

    CAS  PubMed  Google Scholar 

  22. Horning JL, Sahoo SK, Vijayaraghavalu S, Dimitrijevic S, Vasir JK, Jain TK, et al. 3-D tumor model for in vitro evaluation of anticancer drugs. Mol Pharm. 2008;5:849–62.

    Article  CAS  Google Scholar 

  23. Ivascu A, Kubbies M. Diversity of cell-mediated adhesions in breast cancer spheroids. Int J Oncol. 2007;31:1403–13.

    CAS  PubMed  Google Scholar 

  24. Kim CH, Jeon HM, Lee SY, Ju MK, Moon JY, Park HG, et al. Implication of snail in metabolic stress-induced necrosis. PLoS One. 2011;6:e18000.

    Article  CAS  Google Scholar 

  25. Chan DC. Mitochondria: dynamic organelles in disease, aging, and development. Cell. 2006;125:1241–52.

    Article  CAS  Google Scholar 

  26. Nunnari J, Suomalainen A. Mitochondria: in sickness and in health. Cell. 2012;148:1145–59.

    Article  CAS  Google Scholar 

  27. Boland ML, Chourasia AH, Macleod KF. Mitochondrial dysfunction in cancer. Front Oncol. 2013;3:292.

    Article  Google Scholar 

  28. Takagi A, Watanabe M, Ishii Y, Morita J, Hirokawa Y, Matsuzaki T, et al. Three-dimensional cellular spheroid formation provides human prostate tumor cells with tissue-like features. Anticancer Res. 2007;27:45–53.

    CAS  PubMed  Google Scholar 

  29. Mellor HR, Ferguson DJ, Callaghan R. A model of quiescent tumour microregions for evaluating multicellular resistance to chemotherapeutic drugs. Br J Cancer. 2005;93:302–9.

    Article  CAS  Google Scholar 

  30. Desoize B, Jardillier J. Multicellular resistance: a paradigm for clinical resistance? Crit Rev Oncol Hematol. 2000;36:193–207.

    Article  CAS  Google Scholar 

  31. Yu M. Generation, function and diagnostic value of mitochondrial DNA copy number alterations in human cancers. Life Sci. 2011;89:65–71.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chikako Yokoyama.

Additional information

Mayumi Chiba and Chikako Yokoyama contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiba, M., Yokoyama, C., Okada, M. et al. Mitochondrial DNA reduced by hypoxic conditions in three-dimensional (3D) spheroid cell cultures. Tumor Biol. 35, 12689–12693 (2014). https://doi.org/10.1007/s13277-014-2593-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2593-6

Keywords

Navigation