Skip to main content

Advertisement

Log in

Enhancement of silencing DNA polymerase β on the radiotherapeutic sensitivity of human esophageal carcinoma cell lines

  • Research Article
  • Published:
Tumor Biology

Abstract

Human DNA polymerase β (DNA polymeraseβ (polβ)) is a small monomeric protein which is essential for short-patch base excision repair (BER). It plays an important role in regulating the radiation sensitivity of tumor cells in the course of tumor radiation therapy. In this study, qRT-PCR and Western blot assays were used to quantify polβ expression levels in esophageal carcinoma (EC) cells that were transfected with polβ small interfering RNA (siRNA). Cell counting Kit-8 (CCK-8), flow cytometry, and Hoechst/PI stain assays were conducted to evaluate the effects of silencing polβ on the radiotherapeutic sensitivity of EC cells. We found that the expression levels of polβ in EC cells were significantly decreased after transfection with polβ siRNA. Then, we found that polβ silencing increased the sensitivity of EC cells to radiation therapy. In conclusion, our study paves the way for a better understanding of the mechanism of the polβ gene in DNA repair, and we propose that RNA interference technology will have important applications in gene therapy of EC and other cancers in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Goodman MF. Error-prone repair DNA polymerases in prokaryotes and eukaryotes. Annu Rev Biochem. 2002;2002(71):17–50.

    Article  Google Scholar 

  2. Nowak R, Woszczynski M, Siedlecki JA. Changes in the DNA polymerase beta gene expression during development of lung, brain, and testis suggest an involvement of the enzyme in DNA recombination. Exp Cell Res. 1990;191:51–6.

    Article  CAS  PubMed  Google Scholar 

  3. Krahn JM, Beard WA, Wilson SH. Structural insights into DNA polymerase beta deterrents for misincorporation support an induced-fit mechanism for fidelity. Structure. 2004;12(10):1823–32.

    Article  CAS  PubMed  Google Scholar 

  4. Prasad R, Batra VK, Yang XP, Krahn JM, Pedersen LC, Beard WA, et al. Structural insight into the DNA polymerase beta deoxyribose phosphate lyase mechanism. DNA Repair (Amst). 2005;4(12):1347–57.

    Article  CAS  Google Scholar 

  5. Friedberg EC. DNA damage and repair. Nature. 2003;421:436–40.

    Article  PubMed  Google Scholar 

  6. Kidane D, Jonason AS, Gorton TS, Mihaylov I, Pan J, Keeney S, et al. DNA polymerase beta is critical for mouse meiotic synapsis. EMBO J. 2010;29:410–23.

    Article  CAS  PubMed  Google Scholar 

  7. Wilson TE, Lieber MR. Efficient processing of DNA ends during yeast nonhomologous end joining. Evidence for a DNA polymerase b (Pol4)-dependent pathway. J Biol Chem. 1999;274:23599–609.

    Article  CAS  PubMed  Google Scholar 

  8. Neijenhuis S, Verwijs-Janssen M, van den Broek LJ, Begg AC, Vens C. Targeted radiosensitization of cells expressing truncated DNA polymerase {beta}. Cancer Res. 2010;70(21):8706–14.

    Article  CAS  PubMed  Google Scholar 

  9. Cowell IG, Durkacz BW, Tilby MJ. Sensitization of breast carcinoma cells to ionizing radiation by small molecule inhibitors of DNA-dependent protein kinase and ataxia telangiectsia mutated. Biochem Pharmacol. 2005;71(1–2):13–20.

    Article  CAS  PubMed  Google Scholar 

  10. Neijenhuis S, Verwijs-Janssen M, Kasten-Pisula U, Rumping G, Borgmann K, Dikomey E, et al. Mechanism of cell killing after ionizing radiation by a dominant negative DNA polymerase beta. DNA Repair (Amst). 2009;8(3):336–46.

    Article  CAS  Google Scholar 

  11. Vens C, Hofland I, Begg AC. Involvement of DNA polymerase beta in repair of ionizing radiation damage as measured by in vitro plasmid assays. Radiat Res. 2007;168(3):281–91.

    Article  CAS  PubMed  Google Scholar 

  12. Scanlon KJ, Kashani-Sabet M, Miyachi H. Differential gene expression in human cancer cells resistant to cisplatin. 1989. Cancer Investig. 1989;7:581–7.

    Article  CAS  Google Scholar 

  13. Bergoglio V, Pillaire MJ, Lacroix-Triki M, Raynaud-Messina B, Canitrot Y, Bieth A, et al. Deregulated DNA polymerase b induces chromosome instability and tumorigenesis. Cancer Res. 2002;2002(62):3511–4.

    Google Scholar 

  14. Cabelof DC, Guo Z, Raffoul JJ, Sobol RW, Wilson SH, Richardson A, et al. Base excision repair deficiency caused by polymerase b haploinsufficiency: accelerated DNA damage and increased mutational response to carcinogens. Cancer Res. 2003;63:5799–807.

    CAS  PubMed  Google Scholar 

  15. Subramani R, Lopez-Valdez R, Arumugam A, Nandy S, Boopalan T, Lakshmanaswamy R. Targeting insulin-like growth factor 1 receptor inhibits pancreatic cancer growth and metastasis. PLoS ONE. 2014;9(5):e97016.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ma Y, Xia H, Liu Y, Li M. Silencing miR-21 sensitizes non-small cell lung cancer A549 cells to ionizing radiation through inhibition of PI3K/Akt. BioMed Res Int. 2014;2014:617868.

    PubMed  PubMed Central  Google Scholar 

  17. Siegel R, Naishadham D, Jemal A. Cancer statistics. CA Cancer J Clin. 2012;62(1):10–29.

    Article  PubMed  Google Scholar 

  18. Parkin DM, Pisani P, Ferlay J. Estimates of the worldwide incidence of 25 major cancers in 1990. Int J Cancer. 1999;80(6):827–41.

    Article  CAS  PubMed  Google Scholar 

  19. Montesano R, Hollstein M, Hainaut P. Genetic alterations in esophageal cancer and their relevance to etiology and pathogenesis: a review. Int J Cancer. 1996;69(3):225–35.

    Article  CAS  PubMed  Google Scholar 

  20. Li M, Zang W, Wang Y, Ma Y, Xuan X, Zhao J, et al. DNA polymerase β mutations and survival of patients with esophageal squamous cell carcinoma in Linzhou City. China Tumour Biol. 2014;35(1):553–9.

    Article  CAS  PubMed  Google Scholar 

  21. Li M, Zang W, Wang Y, Li Y, Ma Y, Wang N, et al. DNA polymerase β promoter mutations and transcriptional activity in esophageal squamous cell carcinoma. Tumour Biol. 2013;34(5):3259–63.

    Article  CAS  PubMed  Google Scholar 

  22. Li ZL, Liang S, Wang ZC, Li YB, Guo CX, Fang F, et al. Expression of Smac induced by the Egr1 promoter enhances the radiosensitivity of breast cancer cells. Cancer Gene Ther. 2014;21(4):142–9.

    Article  CAS  PubMed  Google Scholar 

  23. Niazi MT, Mok G, Heravi M, Lee L, Vuong T, Aloyz R, et al. Effects of dna-dependent protein kinase inhibition by NU7026 on dna repair and cell survival in irradiated gastric cancer cell line N87. Curr Oncol. 2014;21(2):91–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang H, Tang Y, Guo W, Du Y, Wang Y, Li P, et al. Up-regulation of microRNA-138 induce radiosensitization in lung cancer cells. Tumour Biol. 2014 Apr 2. [Epub ahead of print]

  25. Luo YM, Xia NX, Yang L, Li Z, Yang H, Yu HJ, et al. CTC1 increases the radioresistance of human melanoma cells by inhibiting telomere shortening and apoptosis. Int J Mol Med. 2014;33(6):1484–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhao J, Liu K, Lu J, Ma J, Zhang X, Jiang Y, et al. Alternariol induces DNA polymerase β expression through the PKA-CREB signaling pathway. Int J Oncol. 2012;40(6):1923–8.

    CAS  PubMed  Google Scholar 

  27. Berquist BR, Singh DK, Fan J, Kim D, Gillenwater E, Kulkarni A, et al. Functional capacity of XRCC1 protein variants identified in DNA repair-deficient Chinese hamster ovary cell lines and the human population. Nucleic Acids Res. 2010;38(15):5023–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rogakou EP, Boon C, Redon C, Bonner WM. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol. 1999;146:905–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem. 1998;273:5858–68.

    Article  CAS  PubMed  Google Scholar 

  30. Rothkamm K, Lobrich M. Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc Natl Acad Sci U S A. 2003;100:5057–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bentley J, L'Hôte C, Platt F, Hurst CD, Lowery J, Taylor C, et al. Papillary and muscle invasive bladder tumors with distinct genomic stability profiles have different DNA repair fidelity and KU DNA-binding activities. Genes Chromosom Cancer. 2009;48(4):310–21.

    Article  CAS  PubMed  Google Scholar 

  32. Vandersickel V, Mancini M, Marras E, Willems P, Slabbert J, Philippé J, et al. Lentivirus-mediated RNA interference of Ku70 to enhance radiosensitivity of human mammary epithelial cells. Int J Radiat Biol. 2010;86(2):114–24.

    Article  CAS  PubMed  Google Scholar 

  33. Peralta-Zaragoza O, Bermúdez-Morales VH, Madrid-Marina V. RNA interference: biogenesis molecular mechanisms and its applications in cervical cancer. Rev Investig Clin. 2010;62(1):63–80.

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. 81272188).

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqiang Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Chen, X., Hu, X. et al. Enhancement of silencing DNA polymerase β on the radiotherapeutic sensitivity of human esophageal carcinoma cell lines. Tumor Biol. 35, 10067–10074 (2014). https://doi.org/10.1007/s13277-014-2308-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2308-z

Keywords

Navigation