Skip to main content

Advertisement

Log in

Overexpression of RFC3 is correlated with ovarian tumor development and poor prognosis

  • Research Article
  • Published:
Tumor Biology

Abstract

Replication factor C3 (RFC3) is an oncogene that can potentially predict prognosis in a variety of human cancers. RFC3 expression in ovarian carcinoma has not yet been determined. In this study, we evaluated the messenger RNA (mRNA) and protein expression levels of RFC3 in normal ovarian and ovarian carcinoma tissues using reverse transcription-polymerase chain reaction (RT-PCR), immunohistochemistry, and Western blots (WB). Results showed that higher RFC3 mRNA and protein levels were detected in ovarian carcinoma tissues by RT-PCR and WB. High RFC3 expression was defined as positive staining in >70 % of each tumor cell. High RFC3 expression was detected in 28.1, 17.6, 11.1, and 5.0 % of invasive carcinomas, borderline tumors, cystadenomas, and in normal ovary cells, respectively. Overexpression of RFC3 was associated with later pN status (p = 0.001), pM status (p = 0.001), and advanced International Federation of Gynecology and Obstetrics (FIGO) stage (p = 0.012) in ovarian carcinomas. Univariate survival analyses showed that RFC3 overexpression was also associated with shortened patient survival (mean 7.7 months in tumors with RFC3 overexpression vs 92.9 months in tumors with normal RFC3 levels; p < 0.001). In multivariate analyses, RFC3 protein levels were a significant prognostic factor for ovarian carcinoma (p < 0.001). In conclusion, our findings suggest that RFC3 protein is an important and independent biomarker with prognostic implications for patients with ovarian carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Atlanta: American Cancer Society; American Cancer Society. Cancer Facts & Figures 2012. National Home Office; 2012.

  2. Kurman RJ, Shih IM. The origin and pathogenesis of epithelial ovarian cancer: a proposed unifying theory. Am J Surg Pathol. 2010;34:433–43.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Gomez-Raposo C, Mendiola M, Barriuso J, Hardisson D, Redondo A. Molecular characterization of ovarian cancer by gene-expression profiling. Gynecol Oncol. 2010;118:88–92.

    Article  CAS  PubMed  Google Scholar 

  4. Ricciardelli C, Oehler MK. Diverse molecular pathways in ovarian cancer and their clinical significance. Maturitas. 2009;62:270–5.

    Article  CAS  PubMed  Google Scholar 

  5. Bast Jr RC, Hennessy B, Mills GB. The biology of ovarian cancer: new opportunities for translation. Nat Rev Cancer. 2009;9:415–28.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Vaughan S, Coward JI, Bast Jr RC, et al. Rethinking ovarian cancer: recommendations for improving outcomes. Nat Rev Cancer. 2011;11:719–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Cannistra SA. Cancer of the ovary. N Engl J Med. 2004;351:2519–29.

    Article  CAS  PubMed  Google Scholar 

  8. Lee SH, Kwong AD, Ishimi Y, Hurwitz J. Studies on the DNA elongation inhibitor and its proliferating cell nuclear antigen-dependent control in simian virus 40 DNA replication in vitro. Proc Natl Acad Sci U S A. 1989;86:4877–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Tsurimoto T, Stillman B. Purification of a cellular replication factor, RF-C, that is required for coordinated synthesis of leading and lagging strands during simian virus 40 DNA replication in vitro. Mol Cell Biol. 1989;9:609–19.

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Shimada M, Okuzaki D, Tanaka S, et al. Replication factor C3 of Schizosaccharomyces pombe, a small subunit of replication factor C complex, plays a role in both replication and damage checkpoints. Mol Biol Cell. 1999;10:3991–4003.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Kim HS, Brill SJ. Rfc4 interacts with Rpa1 and is required for both DNA replication and DNA damage checkpoints in Saccharomyces cerevisiae. Mol Cell Biol. 2001;21:3725–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Fien K, Stillman B. Identification of replication factor C from Saccharomyces cerevisiae: a component of the leading-strand DNA replication complex. Mol Cell Biol. 1992;12:155–63.

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Li X, Burgers PM. Molecular cloning and expression of the Saccharomyces cerevisiae RFC3 gene, an essential component of replication factor C. Proc Natl Acad Sci U S A. 1994;91:868–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Luckow B, Bunz F, Stillman B, Lichter P, Schutz G. Cloning, expression, and chromosomal localization of the 140-kilodalton subunit of replication factor C from mice and humans. Mol Cell Biol. 1994;14:1626–34.

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Cullmann G, Fien K, Kobayashi R, Stillman B. Characterization of the five replication factor C genes of Saccharomyces cerevisiae. Mol Cell Biol. 1995;15:4661–71.

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Gray FC, MacNeill SA. The Schizosaccharomyces pombe rfc3+ gene encodes a homologue of the human hRFC36 and Saccharomyces cerevisiae Rfc3 subunits of replication factor C. Curr Genet. 2000;37:159–67.

    Article  CAS  PubMed  Google Scholar 

  17. Mossi R, Hubscher U. Clamping down on clamps and clamp loaders—the eukaryotic replication factor C. Eur J Biochem/FEBS. 1998;254:209–16.

    CAS  Google Scholar 

  18. Anderson LA, Perkins ND. The large subunit of replication factor C interacts with the histone deacetylase, HDAC1. J Biol Chem. 2002;277:29550–4.

    Article  CAS  PubMed  Google Scholar 

  19. Anderson LA, Perkins ND. Regulation of RelA (p65) function by the large subunit of replication factor C. Mol Cell Biol. 2003;23:721–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Koch HB, Zhang R, Verdoodt B, et al. Large-scale identification of c-MYC-associated proteins using a combined TAP/MudPIT approach. Cell Cycle (Georgetown, Tex). 2007;6:205–17.

    Article  CAS  Google Scholar 

  21. Arai M, Kondoh N, Imazeki N, et al. The knockdown of endogenous replication factor C4 decreases the growth and enhances the chemosensitivity of hepatocellular carcinoma cells. Liver Int: Off J Int Assoc Study Liver. 2009;29:55–62.

    Article  CAS  Google Scholar 

  22. Jung HM, Choi SJ, Kim JK. Expression profiles of SV40-immortalization-associated genes upregulated in various human cancers. J Cell Biochem. 2009;106:703–13.

    Article  CAS  PubMed  Google Scholar 

  23. Martinez I, Wang J, Hobson KF, Ferris RL, Khan SA. Identification of differentially expressed genes in HPV-positive and HPV-negative oropharyngeal squamous cell carcinomas. Eur J Cancer. 2007;43:415–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Xiong S, Wang Q, Zheng L, Gao F, Li J. Identification of candidate molecular markers of nasopharyngeal carcinoma by tissue microarray and in situ hybridization. Med Oncol. 2011;28 Suppl 1:S341–8.

    Article  PubMed  Google Scholar 

  25. Lockwood WW, Thu KL, Lin L, et al. Integrative genomics identified RFC3 as an amplified candidate oncogene in esophageal adenocarcinoma. Clin Cancer Res: Off J Am Assoc Cancer Res. 2012;18:1936–46.

    Article  CAS  Google Scholar 

  26. Li Y, Yang HX, Luo RZ, et al. High expression of p300 has an unfavorable impact on survival in resectable esophageal squamous cell carcinoma. Ann Thorac Surg. 2011;91:1531–8.

    Article  PubMed  Google Scholar 

  27. Zlobec I, Steele R, Terracciano L, Jass JR, Lugli A. Selecting immunohistochemical cut-off scores for novel biomarkers of progression and survival in colorectal cancer. J Clin Pathol. 2007;60:1112–6.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Siegel R, Ward E, Brawley O, Jemal A. Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA: Cancer J Clin. 2011;61:212–36.

    Google Scholar 

  29. Badgwell D, Bast Jr RC. Early detection of ovarian cancer. Dis Markers. 2007;23:397–410.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Bast Jr RC. Early detection of ovarian cancer: new technologies in pursuit of a disease that is neither common nor rare. Trans Am Clin Climatol Assoc. 2004;115:233–47. discussion 47-8.

    PubMed Central  PubMed  Google Scholar 

  31. Branzei D, Foiani M. Maintaining genome stability at the replication fork. Nat Rev Mol Cell Biol. 2010;11:208–19.

    Article  CAS  PubMed  Google Scholar 

  32. Mac SM, D'Cunha CA, Farnham PJ. Direct recruitment of N-myc to target gene promoters. Mol Carcinog. 2000;29:76–86.

    Article  CAS  PubMed  Google Scholar 

  33. Oliver TG, Grasfeder LL, Carroll AL, et al. Transcriptional profiling of the Sonic hedgehog response: a critical role for N-myc in proliferation of neuronal precursors. Proc Natl Acad Sci U S A. 2003;100:7331–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Spurgers KB, Gold DL, Coombes KR, et al. Identification of cell cycle regulatory genes as principal targets of p53-mediated transcriptional repression. J Biol Chem. 2006;281:25134–42.

    Article  CAS  PubMed  Google Scholar 

  35. Vernell R, Helin K, Muller H. Identification of target genes of the p16INK4A-pRB-E2F pathway. J Biol Chem. 2003;278:46124–37.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Natural Science Foundation of Guangdong Province (No. S2012010006150; No. S2012040006148) and Science and Technology Planning Project of Guangdong Province, China (No. 2011B031800056; No. 2011B031800276). Thanks are due to Forevergen Biosciences for assistance with the experiments and for valuable discussion. We are grateful to 91SCI Company for language editing assistance.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Jiang.

Additional information

Huimin Shen and Muyan Cai contributed equally to this work

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(JPEG 107 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, H., Cai, M., Zhao, S. et al. Overexpression of RFC3 is correlated with ovarian tumor development and poor prognosis. Tumor Biol. 35, 10259–10266 (2014). https://doi.org/10.1007/s13277-014-2216-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2216-2

Keywords

Navigation