Skip to main content

Advertisement

Log in

The role of microRNAs in human breast cancer progression

  • Review
  • Published:
Tumor Biology

Abstract

Over the past decade, microRNAs (miRNAs) have become a new paradigm of gene regulation. miRNAs are involved in a wide array of carcinogenic processes. Indeed, increasing evidence has shown the importance of miRNAs in cancer, suggesting their possible use as diagnostic, predictive and prognostic biomarkers, leading to miRNA-based anti-cancer therapies, either alone or in combination with current targeted therapies, with the goal of improving cancer treatment responses and increasing cure rates. The advantage of using a miRNA approach is based on the ability to concurrently target multiple effectors of pathways involved in cell proliferation, migration and survival. This review sheds new light on miRNA regulation of genes that play critical roles in the process of malignant transformation and tumour metastasis, the dysregulation of miRNA expression in cancer development and the development of miRNA-based diagnostics and therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA. 2013;63:11–30.

    PubMed  Google Scholar 

  2. Mukherji S, Ebert MS, Zheng GX, Tsang JS, Sharp PA, van Oudenaarden A. MicroRNAs can generate thresholds in target gene expression. Nat Genet. 2011;43:854–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Dvinge H, Git A, Gräf S, Salmon-Divon M, Curtis C, Sottoriva A, et al. The shaping and functional consequences of the microRNA landscape in breast cancer. Nature. 2013;497:378–82.

    Article  CAS  PubMed  Google Scholar 

  4. Shen J, Xia W, Khotskaya YB, Huo L, Nakanishi K, Lim S-O, et al. EGFR modulates microRNA maturation in response to hypoxia through phosphorylation of AGO2. Nature. 2013;497:383–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Song SJ, Poliseno L, Song MS, Ala U, Webster K, Ng C, et al. MicroRNA-antagonism regulates breast cancer stemness and metastasis via TET-family-dependent chromatin remodeling. Cell. 2013;154:311–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Luo Q, Li X, Gao Y, Long Y, Chen L, Huang Y, et al. MiRNA-497 regulates cell growth and invasion by targeting cyclin E1 in breast cancer. Cancer Cell Int. 2013;13:95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Cui W, Zhang S, Shan C, Zhou L, Zhou Z. MicroRNA-133a regulates the cell cycle and proliferation of breast cancer cells by targeting epidermal growth factor receptor through the EGFR/Akt signaling pathway. FEBS J. 2013;280:3962–74.

    Article  CAS  PubMed  Google Scholar 

  8. Di Leva G, Piovan C, Gasparini P, Ngankeu A, Taccioli C, Briskin D, et al. Estrogen mediated-activation of miR-191/425 cluster modulates tumorigenicity of breast cancer cells depending on estrogen receptor status. PLoS Genet. 2013;9:e1003311.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Leivonen S-K, Sahlberg KK, Mäkelä R, Due EU, Kallioniemi O, Børresen-Dale A-L, et al. High-throughput screens identify microRNAs essential for HER2 positive breast cancer cell growth. Mol Oncol. 2014;8:93–104.

    Article  CAS  PubMed  Google Scholar 

  10. Nassirpour R, Mehta PP, Baxi SM. Yin M-J: miR-221 promotes tumorigenesis in human triple negative breast cancer cells. PLoS One. 2013;8:e62170.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Tanic M, Yanowsky K, Rodriguez-Antona C, Andrés R, Márquez-Rodas I, Osorio A, et al. Deregulated miRNAs in hereditary breast cancer revealed a role for miR-30c in regulating KRAS oncogene. PLoS One. 2012;7:e38847.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Körner C, Keklikoglou I, Bender C, Wörner A, Münstermann E, Wiemann S. MicroRNA-31 sensitizes human breast cells to apoptosis by direct targeting of protein kinase C epsilon (PKCepsilon). J Biol Chem. 2013;288:8750–61.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Anaya-Ruiz M, Cebada J, Delgado-López G, Luisa M. miR-153 silencing induces apoptosis in the MDA-MB-231 breast cancer cell line. Asian Pac J Cancer Prev. 2013;14:2983–6.

    Article  PubMed  Google Scholar 

  14. Gao J, Li L, Wu M, Liu M, Xie X, Guo J, et al. MiR-26a inhibits proliferation and migration of breast cancer through repression of MCL-1. PLoS One. 2013;8:e65138.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Hwang MS, Yu N, Stinson SY, Yue P, Newman RJ, Allan BB, et al. miR-221/222 targets adiponectin receptor 1 to promote the epithelial-to-mesenchymal transition in breast cancer. PLoS One. 2013;8:e66502.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Arora H, Qureshi R, Park W-Y. miR-506 regulates epithelial mesenchymal transition in breast cancer cell lines. PLoS One. 2013;8:e64273.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Tavazoie SF, Alarcón C, Oskarsson T, Padua D, Wang Q, Bos PD, et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature. 2008;451:147–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Zhang N, Wang X, Huo Q, Sun M, Cai C, Liu Z, Hu G, Yang Q: MicroRNA-30a suppresses breast tumor growth and metastasis by targeting metadherin. Oncogene 2013

  19. Li L-Z, Zhang CZ, Liu L-L, Yi C, Lu S-X, Zhou X, et al. Yun J-P: miR-720 inhibits tumor invasion and migration in breast cancer by targeting TWIST1. Carcinogenesis. 2014;35:469–78.

    Article  PubMed  Google Scholar 

  20. Yang J, Zhang Z, Chen C, Liu Y, Si Q, Chuang T, et al. MicroRNA-19a-3p inhibits breast cancer progression and metastasis by inducing macrophage polarization through downregulated expression of Fra-1 proto-oncogene. Oncogene. 2014;33:3014–23.

    Article  CAS  PubMed  Google Scholar 

  21. Cai J, Guan H, Fang L, Yang Y, Zhu X, Yuan J, et al. MicroRNA-374a activates Wnt/β-catenin signaling to promote breast cancer metastasis. J Clin Invest. 2013;123:566.

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Taylor MA, Sossey-Alaoui K, Thompson CL, Danielpour D, Schiemann WP. TGF-β upregulates miR-181a expression to promote breast cancer metastasis. J Clin Invest. 2013;123:150.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Yu S-J, Hu J-Y, Kuang X-Y, Luo J-M, Hou Y-F, Di G-H, et al. MicroRNA-200a promotes anoikis resistance and metastasis by targeting YAP1 in human breast cancer. Clin Cancer Res. 2013;19:1389–99.

    Article  CAS  PubMed  Google Scholar 

  24. Lei R, Tang J, Zhuang X, Deng R, Li G, Yu J, et al. Suppression of MIM by microRNA-182 activates RhoA and promotes breast cancer metastasis. Oncogene. 2014;33:1287–96.

    Article  CAS  PubMed  Google Scholar 

  25. Okuda H, Xing F, Pandey PR, Sharma S, Watabe M, Pai SK, et al. Liu Y: miR-7 suppresses brain metastasis of breast cancer stem-like cells by modulating KLF4. Cancer Res. 2013;73:1434–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Hu F, Meng X, Tong Q, Liang L, Xiang R, Zhu T, et al. BMP-6 inhibits cell proliferation by targeting microRNA-192 in breast cancer. Biochim Biophys Acta. 1832;2013:2379–90.

    Google Scholar 

  27. Chou J, Lin JH, Brenot A, Kim J-W, Provot S, Werb Z. GATA3 suppresses metastasis and modulates the tumour microenvironment by regulating microRNA-29b expression. Nat Cell Biol. 2013;15:201–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Zhu N, Zhang D, Xie H, Zhou Z, Chen H, Hu T, et al. Endothelial-specific intron-derived miR-126 is down-regulated in human breast cancer and targets both VEGFA and PIK3R2. Mol Cell Biochem. 2011;351:157–64.

    Article  CAS  PubMed  Google Scholar 

  29. Siragam V, Rutnam ZJ, Yang W, Fang L, Luo L, Yang X, et al. MicroRNA miR-98 inhibits tumor angiogenesis and invasion by targeting activin receptor-like kinase-4 and matrix metalloproteinase-11. Oncotarget. 2012;3:1370–85.

    PubMed Central  PubMed  Google Scholar 

  30. Zou C, Xu Q, Mao F, Li D, Bian C, Liu L-Z, et al. MiR-145 inhibits tumor angiogenesis and growth by N-RAS and VEGF. Cell Cycle. 2012;11:2137–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Kong W, He L, Richards E, Challa S, Xu C, Permuth-Wey J, et al. Upregulation of miRNA-155 promotes tumour angiogenesis by targeting VHL and is associated with poor prognosis and triple-negative breast cancer. Oncogene. 2014;33:679–89.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Xu Q, Jiang Y, Yin Y, Li Q, He J, Jing Y, et al. A regulatory circuit of miR-148a/152 and DNMT1 in modulating cell transformation and tumor angiogenesis through IGF-IR and IRS1. J Mol Cell Biol. 2013;5:3–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. He T, Qi F, Jia L, Wang S, Song N, Guo L, et al. MicroRNA-542-3p inhibits tumor angiogenesis by targeting angiopoietin-2. J Pathol. 2014;232:499–508.

    Article  CAS  PubMed  Google Scholar 

  34. Yang R, Schlehe B, Hemminki K, Sutter C, Bugert P, Wappenschmidt B, et al. A genetic variant in the pre-miR-27a oncogene is associated with a reduced familial breast cancer risk. Breast Cancer Res Treat. 2010;121:693–702.

    Article  PubMed  Google Scholar 

  35. Zhong S, Chen Z, Xu J, Li W, Zhao J. Pre-mir-27a rs895819 polymorphism and cancer risk: a meta-analysis. Mol Biol Rep. 2013;40:3181–6.

    Article  CAS  PubMed  Google Scholar 

  36. Lian H, Wang L, Zhang J. Increased risk of breast cancer associated with CC genotype of Has-miR-146a rs2910164 polymorphism in Europeans. PLoS One. 2012;7:e31615.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Fan C, Chen C, Wu D. The association between common genetic variant of microRNA-499 and cancer susceptibility: a meta-analysis. Mol Biol Rep. 2013;40:3389–94.

    Article  CAS  PubMed  Google Scholar 

  38. Wang J, Bi J, Liu X, Li K, Di J, Wang B. Has-miR-146a polymorphism (rs2910164) and cancer risk: a meta-analysis of 19 case-control studies. Mol Biol Rep. 2012;39:4571–9.

    Article  CAS  PubMed  Google Scholar 

  39. Wang J, Wang Q, Liu H, Shao N, Tan B, Zhang G, et al. The association of miR-146a rs2910164 and miR-196a2 rs11614913 polymorphisms with cancer risk: a meta-analysis of 32 studies. Mutagenesis. 2012;27:779–88.

    Article  CAS  PubMed  Google Scholar 

  40. Wang P-Y, Gao Z-H, Jiang Z-H, Li X-X, Jiang B-F, Xie S-Y. The associations of single nucleotide polymorphisms in miR-146a, miR-196a and miR-499 with breast cancer susceptibility. PLoS One. 2013;8:e70656.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Chen J, Qin Z, Jiang Y, Wang Y, He Y, Dai J, et al. Genetic variations in the flanking regions of miR-101-2 are associated with increased risk of breast cancer. PLoS One. 2014;9:e86319.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Guan X, Liu H, Ju J, Li Y, Li P, Wang LE, Brewster AM, Buchholz TA, Arun BK, Wei Q: Genetic variant rs16430 6bp > 0bp at the microRNA-binding site in TYMS and risk of sporadic breast cancer risk in non-Hispanic white women aged ≤55 years. Molecular Carcinogenesis 2013

  43. Gilam A, Edry L, Mamluk-Morag E, Bar-Ilan D, Avivi C, Golan D, et al. Involvement of IGF-1R regulation by miR-515-5p modifies breast cancer risk among BRCA1 carriers. Breast Cancer Res Treat. 2013;138:753–60.

    Article  CAS  PubMed  Google Scholar 

  44. Jiang Y, Qin Z, Hu Z, Guan X, Wang Y, He Y, et al. Genetic variation in a hsa-let-7 binding site in RAD52 is associated with breast cancer susceptibility. Carcinogenesis. 2013;34:689–93.

    Article  CAS  PubMed  Google Scholar 

  45. Jiang Y, Chen J, Wu J, Hu Z, Qin Z, Liu X, et al. Evaluation of genetic variants in microRNA biosynthesis genes and risk of breast cancer in Chinese women. Int J Cancer. 2013;133:2216–24.

    Article  CAS  PubMed  Google Scholar 

  46. Si H, Sun X, Chen Y, Cao Y, Chen S, Wang H, et al. Circulating microRNA-92a and microRNA-21 as novel minimally invasive biomarkers for primary breast cancer. J Cancer Res Clin Oncol. 2013;139:223–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Chan M, Liaw CS, Ji SM, Tan HH, Wong CY, Thike AA, et al. Identification of circulating microRNA signatures for breast cancer detection. Clin Cancer Res. 2013;19:4477–87.

    Article  CAS  PubMed  Google Scholar 

  48. Cuk K, Zucknick M, Madhavan D, Schott S, Golatta M, Heil J, et al. Plasma microRNA panel for minimally invasive detection of breast cancer. PLoS One. 2013;8:e76729.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Chen W, Cai F, Zhang B, Barekati Z, Zhong XY. The level of circulating miRNA-10b and miRNA-373 in detecting lymph node metastasis of breast cancer: potential biomarkers. Tumor Biol. 2013;34:455–62.

    Article  CAS  Google Scholar 

  50. Kumar S, Keerthana R, Pazhanimuthu A, Perumal P. Overexpression of circulating miRNA-21 and miRNA-146a in plasma samples of breast cancer patients. Indian J Biochem Biophys. 2013;50:210–4.

    CAS  PubMed  Google Scholar 

  51. Zeng RC, Zhang W, Yan XQ, Ye ZQ, Chen ED, Huang DP, et al. Down-regulation of miRNA-30a in human plasma is a novel marker for breast cancer. Med Oncol. 2013;30:1–8.

    Google Scholar 

  52. Ng EK, Li R, Shin VY, Jin HC, Leung CP, Ma ES, et al. Circulating microRNAs as specific biomarkers for breast cancer detection. PLoS One. 2013;8:e53141.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Markou A, Yousef GM, Stathopoulos E, Georgoulias V, Lianidou E. Prognostic significance of metastasis-related microRNAs in early breast cancer patients with a long follow-up. Clin Chem. 2014;60:197–205.

    Article  CAS  PubMed  Google Scholar 

  54. Wang S, Li H, Wang J, Wang D. Expression of microRNA-497 and its prognostic significance in human breast cancer. Diagn Pathol. 2013;8:172.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Falkenberg N, Anastasov N, Rappl K, Braselmann H, Auer G, Walch A, et al. MiR-221/-222 differentiate prognostic groups in advanced breast cancers and influence cell invasion. Br J Cancer. 2013;109:2714–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Tang D, Zhang Q, Zhao S, Wang J, Lu K, Song Y, et al. The expression and clinical significance of microRNA-1258 and heparanase in human breast cancer. Clin Biochem. 2013;46:926–32.

    Article  CAS  PubMed  Google Scholar 

  57. Hoppe R, Achinger-Kawecka J, Winter S, Fritz P, Lo W-Y, Schroth W, et al. Increased expression of miR-126 and miR-10a predict prolonged relapse-free time of primary oestrogen receptor-positive breast cancer following tamoxifen treatment. Eur J Cancer. 2013;49:3598–608.

    Article  CAS  PubMed  Google Scholar 

  58. Ma L, Li GZ, Wu ZS, Meng G. Prognostic significance of let-7b expression in breast cancer and correlation to its target gene of BSG expression. Med Oncol. 2014;31:1–5.

    Google Scholar 

  59. Volinia S, Croce CM. Prognostic microRNA/mRNA signature from the integrated analysis of patients with invasive breast cancer. Proc Natl Acad Sci. 2013;110:7413–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Bockhorn J, Dalton R, Nwachukwu C, Huang S, Prat A, Yee K, et al. MicroRNA-30c inhibits human breast tumour chemotherapy resistance by regulating TWF1 and IL-11. Nat Commun. 2013;4:1393.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Fang Y, Shen H, Cao Y, Li H, Qin R, Chen Q, et al. Involvement of miR-30c in resistance to doxorubicin by regulating YWHAZ in breast cancer cells. Braz J Med Biol Res. 2014;47:60–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  62. Yin J, Zheng G, Jia X, Zhang Z, Zhang W, Song Y, et al. A Bmi1-miRNAs cross-talk modulates chemotherapy response to 5-fluorouracil in breast cancer cells. PLoS One. 2013;8:e73268.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Chen Y, Sun Y, Chen L, Xu X, Zhang X, Wang B, et al. miRNA-200c increases the sensitivity of breast cancer cells to doxorubicin through the suppression of E-cadherin-mediated PTEN/Akt signaling. Mol Med Rep. 2013;7:1579–84.

    CAS  PubMed  Google Scholar 

  64. Zhong S, Li W, Chen Z, Xu J, Zhao J. MiR-222 and miR-29a contribute to the drug-resistance of breast cancer cells. Gene. 2013;531:8–14.

    Article  CAS  PubMed  Google Scholar 

  65. Jiao X, Zhao L, Ma M, Bai X, He M, Yan Y, et al. MiR-181a enhances drug sensitivity in mitoxantone-resistant breast cancer cells by targeting breast cancer resistance protein (BCRP/ABCG2). Breast Cancer Res Treat. 2013;139:717–30.

    Article  CAS  PubMed  Google Scholar 

  66. Hu H, Li S, Cui X, Lv X, Jiao Y, Yu F, et al. The overexpression of hypomethylated miR-663 induces chemotherapy resistance in human breast cancer cells by targeting heparin sulfate proteoglycan 2 (HSPG2). J Biol Chem. 2013;288:10973–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Shibahara Y, Miki Y, Onodera Y, Hata S, Chan MS, Yiu CC, et al. Aromatase inhibitor treatment of breast cancer cells increases the expression of let-7f, a microRNA targeting CYP19A1. J Pathol. 2012;227:357–66.

    Article  CAS  PubMed  Google Scholar 

  68. Ward A, Balwierz A, Zhang J, Küblbeck M, Pawitan Y, Hielscher T, et al. Re-expression of microRNA-375 reverses both tamoxifen resistance and accompanying EMT-like properties in breast cancer. Oncogene. 2013;32:1173–82.

    Article  CAS  PubMed  Google Scholar 

  69. He YJ, Wu JZ, Ji MH, Ma T, Qiao EQ, Ma R, et al. Mir‑342 is associated with estrogen receptor‑α expression and response to tamoxifen in breast cancer. Exp Ther Med. 2013;5:813–8.

    PubMed Central  PubMed  Google Scholar 

  70. Lin J, Liu C, Gao F, Mitchel R, Zhao L, Yang Y, et al. miR-200c enhances radiosensitivity of human breast cancer cells. J Cell Biochem. 2013;114:606–15.

    Article  CAS  PubMed  Google Scholar 

  71. Stankevicins L, da Silva APA, dos Passos FV, dos Santos FE, Ribeiro MCM, David MG, et al. MiR-34a is up-regulated in response to low dose, low energy x-ray induced DNA damage in breast cells. Radiat Oncol. 2013;8:231.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Gong C, Yao Y, Wang Y, Liu B, Wu W, Chen J, et al. Up-regulation of miR-21 mediates resistance to trastuzumab therapy for breast cancer. J Biol Chem. 2011;286:19127–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Bai WD, Ye XM, Zhang MY, Zhu HY, Xi WJ, Huang X, Zhao J, Gu B, Zheng GX, Yang AG: MiR-200c suppresses TGF-β signaling and counteracts trastuzumab resistance and metastasis by targeting ZNF217 and ZEB1 in breast cancer. International Journal of Cancer 2014

  74. Ye X, Bai W, Zhu H, Zhang X, Chen Y, Wang L, et al. MiR-221 promotes trastuzumab-resistance and metastasis in HER2-positive breast cancers by targeting PTEN. BMB Rep. 2014;47:268–73.

    Article  PubMed Central  PubMed  Google Scholar 

  75. Jung EJ, Santarpia L, Kim J, Esteva FJ, Moretti E, Buzdar AU, et al. Plasma microRNA 210 levels correlate with sensitivity to trastuzumab and tumor presence in breast cancer patients. Cancer. 2012;118:2603–14.

    Article  CAS  PubMed  Google Scholar 

  76. Ye X-M, Zhu H-Y, Bai W-D, Wang T, Wang L, Chen Y, et al. Epigenetic silencing of miR-375 induces trastuzumab resistance in HER2-positive breast cancer by targeting IGF1R. BMC Cancer. 2014;14:134.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangshun Wang.

Additional information

WenCheng Zhang is the first author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Liu, J. & Wang, G. The role of microRNAs in human breast cancer progression. Tumor Biol. 35, 6235–6244 (2014). https://doi.org/10.1007/s13277-014-2202-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2202-8

Keywords

Navigation