Skip to main content

Advertisement

Log in

Relevance of miR-21 in HIV and non-HIV-related lymphomas

  • Review
  • Published:
Tumor Biology

Abstract

The critical role of microRNAs (miRNAs) in cell differentiation, homeostasis and cancer development has been extensively discussed in recent publications. The microRNAs with RISC enzyme complex allow it to find its complementary sequence, which is usually located in the 3′-untranslated region (UTR) of the target messenger RNA (mRNA). This is followed by inhibition of protein translation or promotion, resulting in degradation of the target gene. miR-21 has been mapped at chromosome 17q23.2, where it overlaps with the protein coding gene vacuole membrane protein 1 (VMP1), a human homologue of rat vacuole membrane protein. Recent evidence indicates that miR-21 plays a vital role in tumour cell proliferation, apoptosis and invasion. The inhibition of miR-21 may induce cell cycle arrest and increased chemosensitivity to anticancer agents, providing evidence that miR-21 functions as an oncogene in human cancer. Increased expression levels of miR-21 were observed in tumours arising from diverse tissue types. This also includes tumours of haematological origin, such as chronic lymphatic leukaemia, diffuse large B cell lymphomas (DLBCLs), acute myeloid leukaemia and Hodgkin lymphomas. Recently, it has been shown that high levels of B cell activation were induced by miR-21 in circulating B cells and are seen in HIV-infected individual. Notably, miR-21 is overexpressed in activated B cells, suggesting its assistance in maintaining B cell hyperactivation, which plays a pivotal role in HIV-infected cells. Therefore, miR-21 can be considered as a powerful biomarker in HIV-related lymphomas. The number of studies related to the role of miR-21 in HIV-related lymphomas is sparse; therefore, this mini review highlights the recent publications related to clinical impact and significance of miR-21, specifically in HIV- and non-HIV-related lymphomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    Article  CAS  PubMed  Google Scholar 

  2. Calin GA et al. A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med. 2005;353(17):1793–801.

    Article  CAS  PubMed  Google Scholar 

  3. Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007;449(7163):682–8.

    Article  CAS  PubMed  Google Scholar 

  4. Hammond SM. MicroRNAs as oncogenes. Curr Opin Genet Dev. 2006;16(1):4–9.

    Article  CAS  PubMed  Google Scholar 

  5. Liu Z, Sall A, Yang D. MicroRNA: an emerging therapeutic target and intervention tool. Int J Mol Sci. 2008;9(6):978–99.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Pan X, Wang Z-X, Wang R. MicroRNA-21: a novel therapeutic target in human cancer. Cancer Biol Ther. 2010;10(12):1224–32.

    Article  CAS  PubMed  Google Scholar 

  7. Ribas J et al. A novel source for miR-21 expression through the alternative polyadenylation of VMP1 gene transcripts. Nucleic Acids Res. 2012;40(14):6821–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Meng F et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 2007;133(2):647–58.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Zhu S et al. MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem. 2007;282(19):14328–36.

    Article  CAS  PubMed  Google Scholar 

  10. Asangani IA et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene. 2008;27(15):2128–36.

    Article  CAS  PubMed  Google Scholar 

  11. Sicard F et al. Targeting miR-21 for the therapy of pancreatic cancer. Mol Ther. 2013;21(5):986–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Toiyama Y et al. Serum miR-21 as a diagnostic and prognostic biomarker in colorectal cancer. J Natl Cancer Inst. 2013;105(12):849–59.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Medina PP, Nolde M, Slack FJ. OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature. 2010;467(7311):86–90.

    Article  CAS  PubMed  Google Scholar 

  14. Hatley ME et al. Modulation of K-Ras-dependent lung tumorigenesis by MicroRNA-21. Cancer Cell. 2010;18(3):282–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Ma X et al. Loss of the miR-21 allele elevates the expression of its target genes and reduces tumorigenesis. Proc Natl Acad Sci. 2011;108(25):10144–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Jardin F, Figeac M. MicroRNAs in lymphoma, from diagnosis to targeted therapy. Curr Opin Oncol. 2013;25(5):480–6.

    Article  CAS  PubMed  Google Scholar 

  17. Kaplan LD. Management of HIV-associated Hodgkin lymphoma: how far we have come. J Clin Oncol. 2012;30(33):4056–8.

    Article  CAS  PubMed  Google Scholar 

  18. McDunn SH et al. Human immunodeficiency virus-related lymphomas: a possible association between tumor proliferation, lack of ploidy anomalies, and immune deficiency. J Clin Oncol. 1991;9(8):1334–40.

    CAS  PubMed  Google Scholar 

  19. Tagawa H, Ikeda S, Sawada K. Role of microRNA in the pathogenesis of malignant lymphoma. Cancer Sci. 2013;104(7):801–9.

    Article  CAS  PubMed  Google Scholar 

  20. Fulci V et al. Quantitative technologies establish a novel microRNA profile of chronic lymphocytic leukemia. Blood. 2007;109(11):4944–51.

    Article  CAS  PubMed  Google Scholar 

  21. Feng Y, Chen X, Gao L. Knockdown of miR-21 as a novel approach for leukemia therapy. J Formos Med Assoc. 2010;109(9):621–3.

    Article  PubMed  Google Scholar 

  22. Rossi S et al. microRNA fingerprinting of CLL patients with chromosome 17p deletion identify a miR-21 score that stratifies early survival. Blood. 2010;116(6):945–52.

    Article  CAS  PubMed  Google Scholar 

  23. Yamanaka Y et al. Aberrant overexpression of microRNAs activate AKT signaling via down-regulation of tumor suppressors in natural killer–cell lymphoma/leukemia. Blood. 2009;114(15):3265–75.

    Article  CAS  PubMed  Google Scholar 

  24. Sánchez-Espiridión B et al. MicroRNA signatures and treatment response in patients with advanced classical Hodgkin lymphoma. Br J Haematol. 2013;162(3):336–47.

    Article  PubMed  Google Scholar 

  25. Gibcus JH et al. Hodgkin lymphoma cell lines are characterized by a specific miRNA expression profile. Neoplasia. 2009;11(2):167–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Van Vlierberghe P et al. Comparison of miRNA profiles of microdissected Hodgkin/Reed-Sternberg cells and Hodgkin cell lines versus CD77+ B-cells reveals a distinct subset of differentially expressed miRNAs. Br J Haematol. 2009;147(5):686–90.

    Article  PubMed  Google Scholar 

  27. Bouteloup M et al. MicroRNA expression profile in splenic marginal zone lymphoma. Br J Haematol. 2012;156(2):279–81.

    Article  CAS  PubMed  Google Scholar 

  28. Lossos IS, Morgensztern D. Prognostic biomarkers in diffuse large B-cell lymphoma. J Clin Oncol. 2006;24(6):995–1007.

    Article  CAS  PubMed  Google Scholar 

  29. Tilly H, Dreyling M. Diffuse large B-cell non-Hodgkin’s lymphoma: ESMO clinical recommendations for diagnosis, treatment and follow-up. Ann Oncol. 2009;20 Suppl 4:iv110–2.

    Google Scholar 

  30. Klapper W et al. Patient age at diagnosis is associated with the molecular characteristics of diffuse large B-cell lymphoma. Blood. 2012;119(8):1882–7.

    Article  CAS  PubMed  Google Scholar 

  31. Jaffe ES et al. Classification of lymphoid neoplasms: the microscope as a tool for disease discovery. Blood. 2008;112(12):4384–99.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Sandoval JA, Malkas LH, Hickey RJ. Clinical significance of serum biomarkers in pediatric solid mediastinal and abdominal tumors. Int J Mol Sci. 2012;13(1):1126–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Wang C-C, Castillo JJ. Management of HIV-associated lymphomas. Med Health Rhode Island. 2011;94(1):4.

    Google Scholar 

  34. Spina M, Tirelli U. HIV-related non-Hodgkin’s lymphoma (HIV-NHL) in the era of highly active antiretroviral therapy (HAART): some still unanswered questions for clinical management. Ann Oncol. 2004;15(7):993–5.

    Article  CAS  PubMed  Google Scholar 

  35. Ezzat H et al. Improved survival in HIV-associated diffuse large B-cell lymphoma with the addition of rituximab to chemotherapy in patients receiving highly active antiretroviral therapy. HIV Clin Trials. 2007;8(3):132–44.

    Article  CAS  PubMed  Google Scholar 

  36. Gu L et al. Inhibition of miR-21 induces biological and behavioral alterations in diffuse large B-cell lymphoma. Acta Haematol. 2013;130(2):87–94.

    Article  CAS  PubMed  Google Scholar 

  37. Bai H et al. MicroRNA-21 regulates the sensitivity of diffuse large B-cell lymphoma cells to the CHOP chemotherapy regimen. Int J Hematol. 2013;97(2):223–31.

    Article  CAS  PubMed  Google Scholar 

  38. Krichevsky AM, Gabriely G. miR-21: a small multi-faceted RNA. J Cell Mol Med. 2009;13(1):39–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Baraniskin A et al. Identification of microRNAs in the cerebrospinal fluid as marker for primary diffuse large B-cell lymphoma of the central nervous system. Blood. 2011;117(11):3140–6.

    Article  CAS  PubMed  Google Scholar 

  40. Lawrie CH et al. MicroRNA expression distinguishes between germinal center B cell-like and activated B cell-like subtypes of diffuse large B cell lymphoma. Int J Cancer. 2007;121(5):1156–61.

    Article  CAS  PubMed  Google Scholar 

  41. Mao X, Sun Y, Tang J. Serum miR-21 is a diagnostic and prognostic marker of primary central nervous system lymphoma. Neurological Sciences. 2013: p. 1–6.

  42. Rosato P et al. Differential regulation of miR-21 and miR-146a by Epstein–Barr virus-encoded EBNA2. Leukemia. 2012;26(11):2343–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Fognani E et al. Role of microRNA profile modifications in hepatitis C virus-related mixed cryoglobulinemia. PLoS One. 2013;8(5):e62965.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Jonigk D et al. MicroRNA expression in Epstein-Barr virus-associated post-transplant smooth muscle tumours is related to leiomyomatous phenotype. Clin Sarcoma Res. 2013;3(1):9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Garzon R et al. MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood. 2008;111(6):3183–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Levine AM. Acquired immunodeficiency syndrome-related lymphoma [see comments]. Blood. 1992;80(1):8–20.

    CAS  PubMed  Google Scholar 

  47. Sitas F et al. Association between human immunodeficiency virus type 1 infection and cancer in the black population of Johannesburg and Soweto, South Africa. Br J Cancer. 1997;75(11):1704.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Abayomi EA et al. Impact of the HIV epidemic and anti-retroviral treatment policy on lymphoma incidence and subtypes seen in the Western Cape of South Africa, 2002–2009: preliminary findings of the Tygerberg Lymphoma Study Group. Transfus Apher Sci. 2011;44(2):161–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Levine AM et al. Human immunodeficiency virus-related lymphoma. Prognostic factors predictive of survival. Cancer. 1991;68(11):2466–72.

    Article  CAS  PubMed  Google Scholar 

  50. Shiels MS et al. Cancer burden in the HIV-infected population in the United States. J Natl Cancer Inst. 2011;103(9):753–62.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Chadburn A et al. Immunophenotypic analysis of AIDS-related diffuse large B-cell lymphoma and clinical implications in patients from AIDS malignancies consortium clinical trials 010 and 034. J Clin Oncol. 2009;27(30):5039–48.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Chu LC et al. Epigenetic silencing of multiple genes in primary CNS lymphoma. Int J Cancer. 2006;119(10):2487–91.

    Article  CAS  PubMed  Google Scholar 

  53. Thapa DR et al. B-cell activation induced microRNA-21 is elevated in circulating B cells preceding the diagnosis of AIDS-related non-Hodgkin lymphomas. AIDS (London, England). 2012;26(9):1177.

    Article  CAS  Google Scholar 

  54. Watanabe D, et al. Diagnosis and treatment of AIDS-related primary central nervous lymphoma. Journal of Blood Disorders & Transfusion. 2011. 01(S1).

  55. Bea S et al. Diffuse large B-cell lymphoma subgroups have distinct genetic profiles that influence tumor biology and improve gene-expression-based survival prediction. Blood. 2005;106(9):3183–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Di Lisio L et al. The role of miRNAs in the pathogenesis and diagnosis of B-cell lymphomas. Blood. 2012;120(9):1782–90.

    Article  PubMed  Google Scholar 

  57. Trang P et al. Regression of murine lung tumors by the let-7 microRNA. Oncogene. 2009;29(11):1580–7.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 2005;65(14):6029–33.

    Article  CAS  PubMed  Google Scholar 

  59. Si M et al. miR-21-mediated tumor growth. Oncogene. 2006;26(19):2799–803.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

All the authors are thankful to the Pondicherry Centre for Biological centre (PCBS) for providing the necessary facility to carry out the work. Financial support as start-up loan from the State Bank of India (RASMECC), Pondicherry, India, to establish the institute is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Durairaj Sekar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sekar, D., Hairul Islam, V.I., Thirugnanasambantham, K. et al. Relevance of miR-21 in HIV and non-HIV-related lymphomas. Tumor Biol. 35, 8387–8393 (2014). https://doi.org/10.1007/s13277-014-2068-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2068-9

Keywords

Navigation