Skip to main content

Advertisement

Log in

Eg5 inhibitor, a novel potent targeted therapy, induces cell apoptosis in renal cell carcinoma

  • Research Article
  • Published:
Tumor Biology

Abstract

Eg5 is critical for mitosis and overexpressed in various malignant tumors, which has now been identified as a promising target in cancer therapy. However, the anti-cancer activity of Eg5 inhibitor in renal cell carcinoma (RCC) remains an open issue. In this paper, we evaluated, for the first time, the therapeutic benefit of blocking Eg5 by S-(methoxytrityl)-l-cysteine (S(MeO)TLC) in RCC both in vitro and vivo. The expression of Eg5 was examined in clinical tissue samples and various kidney cell lines, including 293T, 786-0, and OS-RC-2. The anti-proliferative activity of Eg5 inhibitors, (S)-trityl-l-cysteine (STLC) and S(MeO)TLC, was evaluated by a cell viability assay. An apoptosis assay with Hoechst nuclear staining and flow cytometry was applied to investigate the efficacy of the S(MeO)TLC, which is more potent than STLC. Immunofluorescence was used to research the possible mechanism. Furthermore, in vivo studies were performed by using subcutaneous xenograft models, which were used to confirm its role as a potential anti-neoplastic drug. The Eg5 expression was detected in kidney cell lines and RCC tissues, which was low in normal kidney samples. STLC and S(MeO)TLC exhibited their optimal anti-proliferative activity in 72 h, and cells treated with S(MeO)TLC presented characteristic monoastral spindle phenotype in 24 h and apoptotic cells in 48 h. In vivo, S(MeO)TLC effectively suppressed tumor growth in subcutaneous xenograft models. Inhibition of Eg5 represses the proliferation of RCC in vitro and in vivo. All these findings collectively demonstrate that S(MeO)TLC, a potent Eg5 inhibitor, is a promising anti-cancer agent for the treatment of RCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig 3
Fig. 4

Similar content being viewed by others

References

  1. Sandim V, Pereira DA, Ornellas AA, Alves G. Renal cell carcinoma and proteomics. Urol Int. 2010;84(4):373–7.

    Article  PubMed  Google Scholar 

  2. Youssef YM, White NM, Grigull J, Krizova A, Samy C, Mejia-Guerrero S, et al. Accurate molecular classification of kidney cancer subtypes using microRNA signature. Eur Urol. 2011;59(5):721–30.

    Article  CAS  PubMed  Google Scholar 

  3. Rini BI, Campbell SC, Escudier B. Renal cell carcinoma. Lancet. 2009;373(9669):1119–32.

    Article  CAS  PubMed  Google Scholar 

  4. Cohen HT, McGovern FJ. Renal-cell carcinoma. N Engl J Med. 2005;353(23):2477–90.

    Article  CAS  PubMed  Google Scholar 

  5. Motzer RJ, Mazumdar M, Bacik J, Berg W, Amsterdam A, Ferrara J. Survival and prognostic stratification of 670 patients with advanced renal cell carcinoma. J Clin Oncol. 1999;17(8):2530–40.

    CAS  PubMed  Google Scholar 

  6. Aass N, De Mulder PH, Mickisch GH, Mulders P, van Oosterom AT, van Poppel H, et al. Randomized phase II/III trial of interferon Alfa-2a with and without 13-cis-retinoic acid in patients with progressive metastatic renal cell carcinoma: the European Organisation for Research and Treatment of Cancer Genito-Urinary Tract Cancer Group (EORTC 30951). J Clin Oncol. 2005;23(18):4172–8.

    Article  CAS  PubMed  Google Scholar 

  7. Gore ME, Griffin CL, Hancock B, Patel PM, Pyle L, Aitchison M, et al. Interferon alfa-2a versus combination therapy with interferon alfa-2a, interleukin-2, and fluorouracil in patients with untreated metastatic renal cell carcinoma (MRC RE04/EORTC GU 30012): an open-label randomised trial. Lancet. 2010;375(9715):641–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Pandey A, Mann M. Proteomics to study genes and genomes. Nature. 2000;405(6788):837–46.

    Article  CAS  PubMed  Google Scholar 

  9. Rini BI, Halabi S, Rosenberg JE, Stadler WM, Vaena DA, Archer L, et al. Phase III trial of bevacizumab plus interferon alfa versus interferon alfa monotherapy in patients with metastatic renal cell carcinoma: final results of CALGB 90206. J Clin Oncol. 2010;28(13):2137–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Sternberg CN, Davis ID, Mardiak J, Szczylik C, Lee E, Wagstaff J, et al. Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized phase III trial. J Clin Oncol. 2010;28(6):1061–8.

    Article  CAS  PubMed  Google Scholar 

  11. Rathmell WK, Godley PA. Recent updates in renal cell carcinoma. Curr Opin Oncol. 2010;22(3):250–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Cavaletti G, Marmiroli P. Chemotherapy-induced peripheral neurotoxicity. Nat Rev Neurol. 2010;6(12):657–66.

    Article  PubMed  Google Scholar 

  13. Rath O, Kozielski F. Kinesins and cancer. Nat Rev Cancer. 2012;12(8):527–39.

    Article  CAS  PubMed  Google Scholar 

  14. Sakowicz R, Finer JT, Beraud C, Crompton A, Lewis E, Fritsch A, et al. Antitumor activity of a kinesin inhibitor. Cancer Res. 2004;64(9):3276–80.

    Article  CAS  PubMed  Google Scholar 

  15. Marra E, Palombo F, Ciliberto G, Aurisicchio L. Kinesin spindle protein SiRNA slows tumor progression. J Cell Physiol. 2013;228(1):58–64.

    Article  CAS  PubMed  Google Scholar 

  16. Sun XD, Shi XJ, Sun XO, Luo YG, Wu XJ, Yao CF, et al. Dimethylenastron suppresses human pancreatic cancer cell migration and invasion in vitro via allosteric inhibition of mitotic kinesin Eg5. Acta Pharmacol Sin. 2011;32(12):1543–8.

    Article  CAS  PubMed  Google Scholar 

  17. Saijo T, Ishii G, Ochiai A, Yoh K, Goto K, Nagai K, et al. Eg5 expression is closely correlated with the response of advanced non-small cell lung cancer to antimitotic agents combined with platinum chemotherapy. Lung Cancer. 2006;54(2):217–25.

    Article  PubMed  Google Scholar 

  18. Sun D, Lu J, Ding K, Bi D, Niu Z, Cao Q, et al. The expression of Eg5 predicts a poor outcome for patients with renal cell carcinoma. Med Oncol. 2013;30(1):476.

    Article  PubMed  Google Scholar 

  19. Ding S, Xing N, Lu J, Zhang H, Nishizawa K, Liu S, et al. Overexpression of Eg5 predicts unfavorable prognosis in non-muscle invasive bladder urothelial carcinoma. Int J Urol. 2011;18(6):432–8.

    Article  CAS  PubMed  Google Scholar 

  20. Liu X, Gong H, Huang K. Oncogenic role of kinesin proteins and targeting kinesin therapy. Cancer Sci. 2013;104(6):651–6.

    Article  CAS  PubMed  Google Scholar 

  21. El-Nassan HB. Advances in the discovery of kinesin spindle protein (Eg5) inhibitors as antitumor agents. Eur J Med Chem. 2013;62:614–31.

    Article  CAS  PubMed  Google Scholar 

  22. Kinoshita M, Watanabe N. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Tanpakushitsu Kakusan Koso. 2007;52(13 Suppl):1796–9.

    PubMed  Google Scholar 

  23. Nakai R, Iida S, Takahashi T, Tsujita T, Okamoto S, Takada C, et al. K858, a novel inhibitor of mitotic kinesin Eg5 and antitumor agent, induces cell death in cancer cells. Cancer Res. 2009;69(9):3901–9.

    Article  CAS  PubMed  Google Scholar 

  24. Wiltshire C, Singh BL, Stockley J, Fleming J, Doyle B, Barnetson R, et al. Docetaxel-resistant prostate cancer cells remain sensitive to S-trityl-L-cysteine-mediated Eg5 inhibition. Mol Cancer Ther. 2010;9(6):1730–9.

    Article  CAS  PubMed  Google Scholar 

  25. DeBonis S, Skoufias DA, Lebeau L, Lopez R, Robin G, Margolis RL, et al. In vitro screening for inhibitors of the human mitotic kinesin Eg5 with antimitotic and antitumor activities. Mol Cancer Ther. 2004;3(9):1079–90.

    CAS  PubMed  Google Scholar 

  26. Ding S, Nishizawa K, Kobayashi T, Oishi S, Lv J, Fujii N, et al. A potent chemotherapeutic strategy for bladder cancer: (S)-methoxy-trityl-L-cystein, a novel Eg5 inhibitor. J Urol. 2010;184(3):1175–81.

    Article  CAS  PubMed  Google Scholar 

  27. Xing ND, Ding ST, Saito R, Nishizawa K, Kobayashi T, Inoue T, et al. A potent chemotherapeutic strategy in prostate cancer: S-(methoxytrityl)-L-cysteine, a novel Eg5 inhibitor. Asian J Androl. 2011;13(2):236–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Edge SB, Compton CC. The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol. 2010;17(6):1471–4.

    Article  PubMed  Google Scholar 

  29. Miyake M, Anai S, Fujimoto K, Ohnishi S, Kuwada M, Nakai Y, et al. 5-fluorouracil enhances the antitumor effect of sorafenib and sunitinib in a xenograft model of human renal cell carcinoma. Oncol Lett. 2012;3(6):1195–202.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Zhang H, Berel D, Wang Y, Li P, Bhowmick NA, Figlin RA, et al. A comparison of Ku0063794, a dual mTORC1 and mTORC2 inhibitor, and temsirolimus in preclinical renal cell carcinoma models. PLoS One. 2013;8(1):e54918.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Chen G, Emens LA. Chemoimmunotherapy: reengineering tumor immunity. Cancer Immunol Immunother. 2013;62(2):203–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Kavallaris M. Microtubules and resistance to tubulin-binding agents. Nat Rev Cancer. 2010;10(3):194–204.

    Article  CAS  PubMed  Google Scholar 

  33. Huang H, Menefee M, Edgerly M, Zhuang S, Kotz H, Poruchynsky M, et al. A phase II clinical trial of ixabepilone (Ixempra; BMS-247550; NSC 710428), an epothilone B analog, in patients with metastatic renal cell carcinoma. Clin Cancer Res. 2010;16(5):1634–41.

    Article  CAS  PubMed  Google Scholar 

  34. Peters T, Lindenmaier H, Haefeli WE, Weiss J. Interaction of the mitotic kinesin Eg5 inhibitor monastrol with P-glycoprotein. Naunyn Schmiedebergs Arch Pharmacol. 2006;372(4):291–9.

    Article  CAS  PubMed  Google Scholar 

  35. Talapatra SK, Schuttelkopf AW, Kozielski F. The structure of the ternary Eg5-ADP-ispinesib complex. Acta Crystallogr D Biol Crystallogr. 2012;68(Pt 10):1311–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Leonard GD, Fojo T, Bates SE. The role of ABC transporters in clinical practice. Oncologist. 2003;8(5):411–24.

    Article  CAS  PubMed  Google Scholar 

  37. Kaan HY, Weiss J, Menger D, Ulaganathan V, Tkocz K, Laggner C, et al. Structure-activity relationship and multidrug resistance study of new S-trityl-L-cysteine derivatives as inhibitors of Eg5. J Med Chem. 2011;54(6):1576–86.

    Article  CAS  PubMed  Google Scholar 

  38. Marcus AI, Peters U, Thomas SL, Garrett S, Zelnak A, Kapoor TM, et al. Mitotic kinesin inhibitors induce mitotic arrest and cell death in Taxol-resistant and -sensitive cancer cells. J Biol Chem. 2005;280(12):11569–77.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Purcell JW, Davis J, Reddy M, Martin S, Samayoa K, Vo H, et al. Activity of the kinesin spindle protein inhibitor ispinesib (SB-715992) in models of breast cancer. Clin Cancer Res. 2010;16(2):566–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Jones R, Vuky J, Elliott T, Mead G, Arranz JA, Chester J, et al. Phase II study to assess the efficacy, safety and tolerability of the mitotic spindle kinesin inhibitor AZD4877 in patients with recurrent advanced urothelial cancer. Invest New Drugs. 2013;31(4):1001–7.

    Article  CAS  PubMed  Google Scholar 

  41. Lee RT, Beekman KE, Hussain M, Davis NB, Clark JI, Thomas SP, et al. A University of Chicago consortium phase II trial of SB-715992 in advanced renal cell cancer. Clin Genitourin Cancer. 2008;6(1):21–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Holen KD, Belani CP, Wilding G, Ramalingam S, Volkman JL, Ramanathan RK, et al. A first in human study of SB-743921, a kinesin spindle protein inhibitor, to determine pharmacokinetics, biologic effects and establish a recommended phase II dose. Cancer Chemother Pharmacol. 2011;67(2):447–54.

    Article  CAS  PubMed  Google Scholar 

  43. Tang PA, Siu LL, Chen EX, Hotte SJ, Chia S, Schwarz JK, et al. Phase II study of ispinesib in recurrent or metastatic squamous cell carcinoma of the head and neck. Invest New Drugs. 2008;26(3):257–64.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the grants from the National Natural Science Foundation of China (No. 81202017) and the Natural Science Foundation of Shandong Province (No. ZR2011HQ027).

Conflicts of interest

None

Ethics statement

All procedures were consistent with the National Institutes of Health Guide and approved by the institutional board with patients’ written consent. This study was evaluated and approved by the Ethics Committee of Provincial Hospital Affiliated to Shandong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sentai Ding.

Additional information

Sentai Ding and Zuohui Zhao contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PPTX 3113 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, S., Zhao, Z., Sun, D. et al. Eg5 inhibitor, a novel potent targeted therapy, induces cell apoptosis in renal cell carcinoma. Tumor Biol. 35, 7659–7668 (2014). https://doi.org/10.1007/s13277-014-2022-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2022-x

Keywords

Navigation