Skip to main content

Advertisement

Log in

Triple blockade of HER2 by a cocktail of anti-HER2 scFv antibodies induces high antiproliferative effects in breast cancer cells

  • Research Article
  • Published:
Tumor Biology

Abstract

Dual therapy targeting human epidermal growth factor receptor 2 (HER2) by pertuzumab and trastuzumab (Herceptin) resulted in the significant survival of patients with HER2-positive breast cancers. However, a number of HER2-overexpressing breast cancers escape from this combination therapy. Due to several advantages of human single-chain antibodies (single chain variable fragments (scFvs)), these molecules were approved as valuable alternatives to entire IgGs for molecular targeting. In this study, our aim was to evaluate the growth inhibitory effects of three novel human anti-HER2 scFvs on breast cancer cells either alone or in combination and to assess their influence on HER2 expression in these cells. Flow cytometry was performed to show the cell binding ability of the scFvs to HER2-overexpressing cell lines, BT-474 and SKBR-3 cells, and HER2 low-expressing cell line, HeLa cells. The antiproliferative effects of the antibodies on the cancer cells were assessed by MTT assay. The amounts of HER2 gene and protein expression after antibody treatments were determined by quantitative real-time PCR and western blotting, respectively. FACS analysis showed that the anti-HER2 scFvs bound to BT-474 and SKBR-3 cells significantly higher than HeLa cells. Growth inhibitory assessment demonstrated that the triple blockade of HER2 by a cocktail of the three anti-HER2 scFvs significantly inhibited the proliferation of the both cancer cells to a greater extent than scFvs individually, in dual combination (scFv-I and scFv-III), and Herceptin. The percentages of growth inhibition of BT-474 and SKBR-3 cells after treatment with the cocktail were up to 77.4 and 76.5 %, respectively. The three scFv antibodies also reduced HER2 expression at both the gene and protein levels individually and in combination. Our results suggest that the cocktail of the three anti-HER2 scFv-I, scFv-II, and scFv-III, which induces high growth inhibition in breast cancer cells and downregulates HER2 gene and protein expression, can be considered as a new alternative for targeting of HER2-positive breast cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ravdin PM, Chamness GC. The c-erbB-2 proto-oncogene as a prognostic and predictive marker in breast cancer: a paradigm for the development of other macromolecular markers. Gene. 1995;159(1):19–27.

    Article  CAS  PubMed  Google Scholar 

  2. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235(4785):177–82.

    Article  CAS  PubMed  Google Scholar 

  3. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001;2(2):127–37.

    Article  CAS  PubMed  Google Scholar 

  4. Zaczek A, Brandt B, Bielawski KP. The diverse signaling network of EGFR, HER2, HER3 and HER4 tyrosine kinase receptors and the consequences for therapeutic approaches. Histol Histopathol. 2005;20(3):1005–15.

    CAS  PubMed  Google Scholar 

  5. Garrett JT, Arteaga CL. Resistance to HER2-directed antibodies and tyrosine kinase inhibitors: mechanisms and clinical implications. Cancer Biol Ther. 2011;11(9):793–800.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Ghosh R, Narasanna A, Wang SE, Liu S, Chakrabarty A, Balko JM, et al. Trastuzumab has preferential activity against breast cancers driven by HER2 homodimers. Cancer Res. 2011;71(5):1871–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Scaltriti M, Verma C, Guzman M, Jimenez J, Parra JL, Pedersen K, et al. Lapatinib, a HER2 tyrosine kinase inhibitor, induces stabilization and accumulation of HER2 and potentiates trastuzumab-dependent cell cytotoxicity. Oncogene. 2009;28(6):803–14.

    Article  CAS  PubMed  Google Scholar 

  8. Wainberg ZA, Anghel A, Desai AJ, Ayala R, Luo T, Safran B, et al. Lapatinib, a dual EGFR and HER2 kinase inhibitor, selectively inhibits HER2-amplified human gastric cancer cells and is synergistic with trastuzumab in vitro and in vivo. Clin Cancer Res. 2010;16(5):1509–15.

    Article  CAS  PubMed  Google Scholar 

  9. Guan H, Jia SF, Zhou Z, Stewart J, Kleinerman ES. Herceptin down-regulates HER-2/neu and vascular endothelial growth factor expression and enhances taxol-induced cytotoxicity of human Ewing's sarcoma cells in vitro and in vivo. Clin Cancer Res. 2005;11(5):2008–17.

    Article  CAS  PubMed  Google Scholar 

  10. Hudis CA. Trastuzumab—mechanism of action and use in clinical practice. N Engl J Med. 2007;357(1):39–51.

    Article  CAS  PubMed  Google Scholar 

  11. Junttila TT, Akita RW, Parsons K, Fields C, Lewis Phillips GD, Friedman LS, et al. Ligand-independent HER2/HER3/PI3K complex is disrupted by trastuzumab and is effectively inhibited by the PI3K inhibitor GDC-0941. Cancer Cell. 2009;15(5):429–40.

    Article  CAS  PubMed  Google Scholar 

  12. Cobleigh MA, Vogel CL, Tripathy D, Robert NJ, Scholl S, Fehrenbacher L, et al. Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol. 1999;17(9):2639–48.

    CAS  PubMed  Google Scholar 

  13. Nahta R, Esteva FJ. HER2 therapy: molecular mechanisms of trastuzumab resistance. Breast Cancer Res. 2006;8:215.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L, et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol. 2002;20(3):719–26.

    Article  CAS  PubMed  Google Scholar 

  15. Nagy P, Friedlander E, Tanner M, Kapanen AI, Carraway KL, Isola J, et al. Decreased accessibility and lack of activation of ErbB2 in JIMT-1, a herceptin-resistant, MUC4-expressing breast cancer cell line. Cancer Res. 2005;65(2):473–82.

    CAS  PubMed  Google Scholar 

  16. Vu T, Claret FX. Trastuzumab: updated mechanisms of action and resistance in breast cancer. Front Oncol. 2012;2:62.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Sheridan C. FDA approves pertuzumab. Nat Biotechnol. 2012;30(7):570.

    Article  Google Scholar 

  18. Capelan M, Pugliano L, De Azambuja E, Bozovic I, Saini KS, Sotiriou C, et al. Pertuzumab: new hope for patients with HER2-positive breast cancer. Ann Oncol. 2013;24(2):273–82.

    Article  CAS  PubMed  Google Scholar 

  19. Fedele C, Riccio G, Coppola C, Barbieri A, Monti MG, Arra C, et al. Comparison of preclinical cardiotoxic effects of different ErbB2 inhibitors. Breast Cancer Res Treat. 2012;133(2):511–21.

    Article  CAS  PubMed  Google Scholar 

  20. Drucker AM, Wu S, Dang CT, Lacouture ME. Risk of rash with the anti-HER2 dimerization antibody pertuzumab: a meta-analysis. Breast Cancer Res Treat. 2012;135(2):347–54.

    Article  CAS  PubMed  Google Scholar 

  21. Ahmad ZA, Yeap SK, Ali AM, Ho WY, Alitheen NB, Hamid M. scFv antibody: principles and clinical application. Clin Dev Immunol. 2012;2012:980250.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Liu F, Lu Q, Ye X, Fang C, Zhao Y, Liang M, et al. Cancer gene therapy of adenovirus-mediated anti-4–1BB scFv in immunocompetent mice. Cancer Biol Ther. 2008;7(3):448–53.

    Article  CAS  PubMed  Google Scholar 

  23. Monnier PP, Vigouroux RJ, Tassew NG. In vivo applications of single chain Fv (variable domain) (scFv) fragments. Antibodies. 2013;2:193–208.

    Article  CAS  Google Scholar 

  24. Whitlow M, Bell BA, Feng SL, Filpula D, Hardman KD, Hubert SL, et al. An improved linker for single-chain Fv with reduced aggregation and enhanced proteolytic stability. Protein Eng. 1993;6(8):989–95.

    Article  CAS  PubMed  Google Scholar 

  25. Accardi L, Di Bonito P. Antibodies in single-chain format against tumour-associated antigens: present and future applications. Curr Med Chem. 2010;17(17):1730–55.

    Article  CAS  PubMed  Google Scholar 

  26. Dantas-Barbosa C, de Macedo BM, Maranhao AQ. Antibody phage display libraries: contributions to oncology. Int J Mol Sci. 2012;13(5):5420–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Zhao A, Nunez-Cruz S, Li C, Coukos G, Siegel DL, Scholler N. Rapid isolation of high-affinity human antibodies against the tumor vascular marker Endosialin/TEM1, using a paired yeast-display/secretory scFv library platform. J Immunol Methods. 2011;363(2):221–3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Nejatollahi F, Asgharpour M, Jaberipour M. Down-regulation of vascular endothelial growth factor expression by anti-Her2/neu single chain antibodies. Med Oncol. 2012;29:378–83.

    Article  CAS  PubMed  Google Scholar 

  29. Cohen S. Cancer: past, present, and future. eBookIt.com (2013). http://www.barnesandnoble.com/w/cancer-sheldon-cohen-md-facp/1116226154?ean=2940148464273.

  30. Hicks DG, Kulkarni S. HER2+ breast cancer: review of biologic relevance and optimal use of diagnostic tools. Am J Clin Pathol. 2008;129(2):263–73.

    Article  PubMed  Google Scholar 

  31. Awada A, Bozovic-Spasojevic I, Chow L. New therapies in HER2-positive breast cancer: a major step towards a cure of the disease? Cancer Treat Rev. 2012;38(5):494–504.

    Article  CAS  PubMed  Google Scholar 

  32. Wong ALA, Lee SC. Mechanisms of resistance to trastuzumab and novel therapeutic strategies in HER2-positive breast cancer. Int J Breast Cancer. 2012;2012:415170.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Swain SM, Kim SB, Cortés J, Ro J, Semiglazov V, Campone M, et al. Pertuzumab, trastuzumab, and docetaxel for HER2-positive metastatic breast cancer (CLEOPATRA study): overall survival results from a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol. 2013;14(6):461–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Cardinale D, Colombo A, Torrisi R, Sandri MT, Civelli M, Salvatici M, et al. Trastuzumab-induced cardiotoxicity: clinical and prognostic implications of troponin I evaluation. J Clin Oncol. 2010;28(25):3910–6.

    Article  CAS  PubMed  Google Scholar 

  35. Widakowich C, de Castro JG, de Azambuja E, Dinh P, Awada A. Side effects of approved molecular targeted therapies in solid cancers. Oncologist. 2007;12(12):1443–55.

    Article  CAS  PubMed  Google Scholar 

  36. Ren XR, Wei J, Lei G, Wang J, Lu J, Xia W, et al. Polyclonal HER2-specific antibodies induced by vaccination mediate receptor internalization and degradation in tumor cells. Breast Cancer Res. 2012;14(3):R89.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Liu D, Wang C, Li C, Zhang X, Zahng B, Mi Z, et al. Production and Characterization of a humanized single-chain antibody against human integrin αvβ3 protein. J Biol Chem. 2011;286:24500–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Montgomery RB, Makary E, Schiffman K, Goodell V, Disis ML. Endogenous anti-HER2 antibodies block HER2 phosphorylation and signaling through extracellular signal-regulated kinase. Cancer Res. 2005;65(2):650–6.

    CAS  PubMed  Google Scholar 

  39. Wang JN, Feng JN, Yu M, Xu M, Shi M, Zhou T, et al. Structural analysis of the epitopes on erbB2 interacted with inhibitory or non-inhibitory monoclonal antibodies. Mol Immunol. 2004;40(13):963–9.

    Article  CAS  PubMed  Google Scholar 

  40. Kennel SJ. Effects of target antigen competition on distribution of monoclonal antibody to solid tumors. Cancer Res. 1992;52:1284–90.

    CAS  PubMed  Google Scholar 

  41. Banappagari S, Ronald S, Satyanarayanajois SD. Structure-activity relationship of conformationally constrained peptidomimetics for antiproliferative activity in HER2-overexpressing breast cancer cell lines. Medchemcomm. 2011;2(8):752–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Nahta R. Molecular mechanisms of trastuzumab-based treatment in HER2-overexpressing breast cancer. ISRN Oncol. 2012;2012:428062.

    PubMed Central  PubMed  Google Scholar 

  43. Ceran C, Cokol M, Cingoz S, Tasan I, Ozturk M, Yagci T. Novel anti-HER2 monoclonal antibodies: synergy and antagonism with tumor necrosis factor-α. BMC Cancer. 2012;12:45.

    Article  Google Scholar 

  44. Abraham J. Pertuzumab plus trastuzumab and docetaxel in HER2-positive metastatic breast cancer. Commun Oncol. 2012;9:42–4.

    Article  Google Scholar 

  45. Tai W, Mahato R, Cheng K. The role of HER2 in cancer therapy and targeted drug delivery. J Control Release. 2010;146(3):264–75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Harbeck N, Beckmann MW, Rody A, Schneeweiss A, Müller V, Fehm T, et al. HER2 dimerization inhibitor pertuzumab-mode of action and clinical data in breast cancer. Breast Cancer. 2013;8(1):49–55.

    Google Scholar 

  47. Garrett JT, Sutton CR, Kuba MG, Cook RS, Arteaga CL. Dual blockade of HER2 in HER2-overexpressing tumor cells does not completely eliminate HER3 function. Clin Cancer Res. 2013;19(3):610–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Scheuer W, Friess T, Burtscher H, Bossenmaier B, Endl J, Hasmann M. Strongly enhanced antitumor activity of trastuzumab and pertuzumab combination treatment on HER2-positive human xenograft tumor models. Cancer Res. 2009;69:9330–6.

    Article  CAS  PubMed  Google Scholar 

  49. Baselga J, Gelmon KA, Verma S, Wardley A, Conte P, Miles D, et al. Phase II trial of pertuzumab and trastuzumab in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer that progressed during prior trastuzumab therapy. J Clin Oncol. 2010;28:1138–44.

    Article  CAS  PubMed  Google Scholar 

  50. Morse MA, Wei J, Hartman Z, Xia W, Ren XR, Lei G, et al. Synergism from combined immunologic and pharmacologic inhibition of HER2 in vivo. Int J Cancer. 2010;126(12):2893–903.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Adams GP, Schier R, McCall AM, Simmons HH, Horak EM, Alpaugh RK, et al. Tumor penetration of single-chain Fv antibody molecules. Cancer Res. 2001;61(12):4750–5.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Shiraz University of Medical Sciences for the financial support. The present article was extracted from the MSc thesis written by Mahdi Asgharpour (grant no. 88-4777).

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Foroogh Nejatollahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nejatollahi, F., Jaberipour, M. & Asgharpour, M. Triple blockade of HER2 by a cocktail of anti-HER2 scFv antibodies induces high antiproliferative effects in breast cancer cells. Tumor Biol. 35, 7887–7895 (2014). https://doi.org/10.1007/s13277-014-1854-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-1854-8

Keywords

Navigation