Skip to main content
Log in

Bufalin inhibited the growth of human osteosarcoma MG-63 cells via down-regulation of Bcl-2/Bax and triggering of the mitochondrial pathway

  • Research Article
  • Published:
Tumor Biology

Abstract

Cinobufacini (Huachansu), a Chinese medicine prepared from the skin of Bufo bufo gargarizans Cantor (Bufonidae), has potent anti-tumor activity in vitro and in vivo. However, the molecular mechanism of cell apoptosis induced by Bufalin remains elusive. Here, we investigated the apoptosis in Bufalin-treated human osteosarcoma MG-63 cells. The results showed that Bufalin could inhibit cell proliferation and induce apoptosis in a dose- and time-dependent manner. Further investigation revealed that a disruption of mitochondrial transmembrane potential (MMP) and an up-regulation of reactive oxygen species (ROS) in Bufalin-treated cells. By western blot analysis, we found that the up-regulation of Apaf-1, cleaved PARP, cleaved caspase-3, cleaved caspase-9, and Bax/Bcl-2, varies with different concentration of Bufalin. These protein interactions may play a pivotal role in the regulation of apoptosis. Taken together, these results overall indicate that Bufalin could be used as an effective anti-tumor agent in therapy of osteosarcoma targets the mitochondrial-dependent signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Thompson Jr RC, Cheng EY, Clohisy DR, Perentesis J, Manivel C, Le CT. Clin Orthop Relat Res. 2002;397:240–347.

    Article  Google Scholar 

  2. Arndt CA, Crist WM. N Engl J Med. 1999;341:342–52.

    Article  CAS  PubMed  Google Scholar 

  3. Bacci G, Longhi A, Bertoni F, Bacchini P, Ruggeri P, Versari M, et al. Primary high-grade osteosarcoma: comparison between preadolescent and older patients. J Pediatr Hematol Oncol. 2005;27:129–34.

    Article  PubMed  Google Scholar 

  4. Yang C, Choy E, Hornicek FJ, Wood KB, Schwab JH, Liu X, et al. Histone deacetylase inhibitor (HDACI) PCI-24781 potentiates cytotoxic effects of doxorubicin in bone sarcoma cells. Cancer Chemother Pharmacol. 2011;67:439–46.

    Article  CAS  PubMed  Google Scholar 

  5. Wittenburg LA, Bisson L, Rose BJ, Korch C, Thamm DH. The histone deacetylase inhibitor valproic acid sensitizes human and canine osteosarcoma to doxorubicin. Cancer Chemother Pharmacol. 2011;67:83–92.

    Article  CAS  PubMed  Google Scholar 

  6. Qi F, Li A, Inagaki Y, Kokudo N, Tamura S, Nakata M, et al. Antitumor activity of extracts and compounds from the skin of the toad Bufo bufo gargarizans Cantor. Int Immunopharmacol. 2011;11:342–9.

    Article  CAS  PubMed  Google Scholar 

  7. Qi F, Inagaki Y, Gao B, Cui X, Xu H, Kokudo N, et al. Bufalin and cinobufagin induce apoptosis of human hepatocellular carcinoma cells via Fas- and mitochondria-mediated pathways. Cancer Sci. 2011;102:951–8.

    Article  CAS  PubMed  Google Scholar 

  8. Li H, Wang P, Gao Y, Zhu X, Liu L, Cohen L, et al. Na+/K + −ATPase α3 mediates sensitivity of hepatocellular carcinoma cells to bufalin. Oncol Rep. 2011;25:825–30.

    CAS  PubMed  Google Scholar 

  9. Xie CM, Chan WY, Yu S, Zhao J, Cheng CH. Bufalin induces autophagy-mediated cell death in human colon cancer cells through reactive oxygen species generation and JNK activation. Free Radic Biol Med. 2011;51:1365–75.

    Article  CAS  PubMed  Google Scholar 

  10. Amano Y, Cho Y, Matsunawa M, Komiyama K, Makishima M. Increased nuclear expression and transactivation of vitamin D receptor by the cardiotonic steroid bufalin in human myeloid leukemia cells. J Steroid Biochem Mol Biol. 2009;114:144–51.

    Article  CAS  PubMed  Google Scholar 

  11. Li D, Qu X, Hou K, Zhang Y, Dong Q, Teng Y, et al. PI3K/Akt is involved in bufalin induced apoptosis in gastric cancer cells. Anticancer Drugs. 2009;20:59–64.

    Article  CAS  PubMed  Google Scholar 

  12. Yu CH, Kan SF, Pu HF, Jea Chien E, Wang PS. Apoptotic signaling in bufalin- and cinobufagin-treated and rogen-dependent and -independent human prostate cancer cells. Cancer Sci. 2008;99:2467–76.

    Article  CAS  PubMed  Google Scholar 

  13. Hsiao YP, Yu CS, Yu CC, Yang JS, Chiang JH, Lu CC, et al. Triggering apoptotic death of human malignant melanoma A375.S2 cells by bufalin: involvement of caspase cascade-dependent and independent mitochondrial signaling pathways. Evid Based Complement Alternat Med. 2012;2012:591241.

    PubMed  PubMed Central  Google Scholar 

  14. Jiang Y, Zhang Y, Luan J, Duan H, Zhang F, Yagasaki K, et al. Effects of bufalin on the proliferation of human lung cancer cells and its molecular mechanisms of action. Cytotechnology. 2010;62:573–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhu Z, Sun H, Ma G, Wang Z, Li E, Liu Y, et al. Bufalin induces lung cancer cell apotosis via the inhibition of PI3K/Akt pathway. Int J Mol Sci. 2012;13:2025–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ek ET, Choong PF. The role of high-dose therapy and autologous stem cell transplantation for pediatric bone and soft tissue sarcomas. Expert Rev Anticancer Ther. 2006;6:225–37.

    Article  CAS  PubMed  Google Scholar 

  17. Yang C, Hornicek FJ, Wood KB, Schwab JH, Mankin H, Duan Z. RAIDD expression is impaired in multidrug resistant osteosarcoma cell lines. Cancer Chemother Pharmacol. 2009;64:607–14.

    Article  CAS  PubMed  Google Scholar 

  18. Sun SY, Hail Jr N, Lotan R. Apoptosis as a novel target for cancer chemoprevention. J Natl Cancer Inst. 2004;96:662–72.

    Article  CAS  PubMed  Google Scholar 

  19. Hirsch T, Marzo I, Kroemer G. Role of the mitochondrial permeability transition pore in apoptosis. Biosci Rep. 1997;17:67–76.

    Article  CAS  PubMed  Google Scholar 

  20. Iannolo G, Conticello C, Memeo L, De Maria R. Apoptosis in normal and cancer stem cells. Crit Rev Oncol Hematol. 2008;66:42–51.

    Article  PubMed  Google Scholar 

  21. Mohamad N, Gutierrez A, Nunez M, Cocca C, Martín G, Cricco G, et al. Mitochondrial apoptotic pathways. Biocell. 2005;29:149–61.

    CAS  PubMed  Google Scholar 

  22. Orrenius S, Gogvadze V, Zhivotovsky B. Mitochondrial oxidative stress: implications for cell death. Annu Rev Pharmacol Toxicol. 2007;47:143–83.

    Article  CAS  PubMed  Google Scholar 

  23. Yin XM. Signal transduction mediated by Bid, a pro-death Bcl-2 family proteins, connects the death receptor and mitochondria apoptosis pathways. Cell Res. 2000;10:161–7.

    Article  CAS  PubMed  Google Scholar 

  24. Takahashi A, Masuda A, Sun M, Centonze VE, Herman B. Oxidative stress-induced apoptosis is associated with alterations in mitochondrial caspase activity and Bcl-2-dependent alterations in mitochondrial pH (pHm). Brain Res Bull. 2004;62:497–504.

    Article  CAS  PubMed  Google Scholar 

  25. Li M, Kondo T, Zhao QL, Li FJ, Tanabe K, Arai Y, et al. Apoptosis induced by cadmium in human lymphoma U937 cells through Ca2+-calpain and caspase-mitochondriadependent pathways. J Biol Chem. 2000;275:39702–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Wang (Harbin Medical University) for his technical help.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenggang Bi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, D., Bi, Z. Bufalin inhibited the growth of human osteosarcoma MG-63 cells via down-regulation of Bcl-2/Bax and triggering of the mitochondrial pathway. Tumor Biol. 35, 4885–4890 (2014). https://doi.org/10.1007/s13277-014-1640-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-1640-7

Keywords

Navigation