Skip to main content

Advertisement

Log in

Genetic imbalances detected by multiplex ligation-dependent probe amplification in a cohort of patients with oral squamous cell carcinoma—the first step towards clinical personalized medicine

  • Research Article
  • Published:
Tumor Biology

Abstract

Oral tumors are a growing health problem worldwide; thus, it is mandatory to establish genetic markers in order to improve diagnosis and early detection of tumors, control relapses and, ultimately, delineate individualized therapies. This study was the first to evaluate and discuss the clinical applicability of a multiplex ligation-dependent probe amplification (MLPA) probe panel directed to head and neck cancer. Thirty primary oral squamous cell tumors were analyzed using the P428 MLPA probe panel. We detected genetic imbalances in 26 patients and observed a consistent pattern of distribution of genetic alterations in terms of losses and gains for some chromosomes, particularly for chromosomes 3, 8, and 11. Regarding the latter, some specific genes were highlighted due to frequent losses of genetic material—RARB, FHIT, CSMD1, GATA4, and MTUS1—and others due to gains—MCCC1, MYC, WISP1, PTK2, CCND1, FGF4, FADD, and CTTN. We also verified that the gains of MYC and WISP1 genes seem to suggest higher propensity of tumors localized in the floor of the mouth. This study proved the value of this MLPA probe panel for a first-tier analysis of oral tumors. The probemix was developed to include target regions that have been already shown to be of diagnostic/prognostic relevance for oral tumors. Furthermore, this study emphasized several of those specific genetic targets, suggesting its importance to oral tumor development, to predict patients’ outcomes, and also to guide the development of novel molecular therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Forastiere A, Koch W, Trotti A, Sidransky D. Head and neck cancer. N Engl J Med. 2001;345(26):1890–900.

    Article  CAS  PubMed  Google Scholar 

  2. Mitka M. Evidence lacking for benefit from oral cancer screening. JAMA. 2013;309(18):1884. doi:10.1001/jama.2013.4913.

    Article  CAS  PubMed  Google Scholar 

  3. Llewellyn CD, Johnson NW, Warnakulasuriya KA. Risk factors for squamous cell carcinoma of the oral cavity in young people—a comprehensive literature review. Oral Oncol. 2001;37(5):401–18.

    Article  CAS  PubMed  Google Scholar 

  4. Wittekindt C, Wagner S, Mayer CS, Klussmann JP. Basics of tumor development and importance of human papilloma virus (HPV) for head and neck cancer. GMS Curr Top Otorhinolaryngol Head Neck Surg. 2012;11:Doc09. doi:10.3205/cto000091.

    PubMed  PubMed Central  Google Scholar 

  5. Shah FD, Begum R, Vajaria BN, Patel KR, Patel JB, Shukla SN, et al. A review on salivary genomics and proteomics biomarkers in oral cancer. Indian J Clin Biochem. 2011;26(4):326–34. doi:10.1007/s12291-011-0149-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schouten JP, McElgunn CJ, Waaijer R, Zwijnenburg D, Diepvens F, Pals G. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res. 2002;30(12):e57.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Homig-Holzel C, Savola S. Multiplex ligation-dependent probe amplification (MLPA) in tumor diagnostics and prognostics. Diagn Mol Pathol. 2012;21(4):189–206. doi:10.1097/PDM.0b013e3182595516.

    Article  PubMed  Google Scholar 

  8. Wittekind C, Greene FL, Hutter RVP, Klimpfinger M. LH. S. TNM atlas. Illustrated guide to the TNM/pTNM classification of malignant tumours. 5th ed. Berlin: Springer; 2003.

    Google Scholar 

  9. Coffa J, Berg J. Analysis of MLPA data using novel software Coffalyser.NET by MRC-Holland. In: Eldin AB, editor. Modern approaches to quality control. Rijeka, Croatia: InTech; 2011. p. 125–50.

    Google Scholar 

  10. Nobre RJ, Cruz E, Real O, de Almeida LP, Martins TC. Characterization of common and rare human papillomaviruses in Portuguese women by the polymerase chain reaction, restriction fragment length polymorphism and sequencing. J Med Virol. 2010;82(6):1024–32. doi:10.1002/jmv.21756.

    Article  CAS  PubMed  Google Scholar 

  11. Bockmuhl U, Petersen S, Schmidt S, Wolf G, Jahnke V, Dietel M, et al. Patterns of chromosomal alterations in metastasizing and nonmetastasizing primary head and neck carcinomas. Cancer Res. 1997;57(23):5213–6.

    CAS  PubMed  Google Scholar 

  12. Redon R, Muller D, Caulee K, Wanherdrick K, Abecassis J, du Manoir S. A simple specific pattern of chromosomal aberrations at early stages of head and neck squamous cell carcinomas: PIK3CA but not p63 gene as a likely target of 3q26-qter gains. Cancer Res. 2001;61(10):4122–9.

    CAS  PubMed  Google Scholar 

  13. Ohta M, Inoue H, Cotticelli MG, Kastury K, Baffa R, Palazzo J, et al. The FHIT gene, spanning the chromosome 3p14.2 fragile site and renal carcinoma-associated t(3;8) breakpoint, is abnormal in digestive tract cancers. Cell. 1996;84(4):587–97.

    Article  CAS  PubMed  Google Scholar 

  14. Virgilio L, Shuster M, Gollin SM, Veronese ML, Ohta M, Huebner K, et al. FHIT gene alterations in head and neck squamous cell carcinomas. Proc Natl Acad Sci U S A. 1996;93(18):9770–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Saldivar JC, Bene J, Hosseini SA, Miuma S, Horton S, Heerema NA, et al. Characterization of the role of Fhit in suppression of DNA damage. Adv Biol Regul. 2013;53(1):77–85. doi:10.1016/j.jbior.2012.10.003.

    Article  CAS  PubMed  Google Scholar 

  16. Saldivar JC, Miuma S, Bene J, Hosseini SA, Shibata H, Sun J, et al. Initiation of genome instability and preneoplastic processes through loss of Fhit expression. PLoS Genet. 2012;8(11):e1003077. doi:10.1371/journal.pgen.1003077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lotan R, Xu XC, Lippman SM, Ro JY, Lee JS, Lee JJ, et al. Suppression of retinoic acid receptor-beta in premalignant oral lesions and its up-regulation by isotretinoin. N Engl J Med. 1995;332(21):1405–10. doi:10.1056/NEJM199505253322103.

    Article  CAS  PubMed  Google Scholar 

  18. Zou CP, Youssef EM, Zou CC, Carey TE, Lotan R. Differential effects of chromosome 3p deletion on the expression of the putative tumor suppressor RAR beta and on retinoid resistance in human squamous carcinoma cells. Oncogene. 2001;20(47):6820–7. doi:10.1038/sj.onc.1204846.

    Article  CAS  PubMed  Google Scholar 

  19. O’Shaughnessy JA, Kelloff GJ, Gordon GB, Dannenberg AJ, Hong WK, Fabian CJ, et al. Treatment and prevention of intraepithelial neoplasia: an important target for accelerated new agent development. Clin Cancer Res. 2002;8(2):314–46.

    PubMed  Google Scholar 

  20. Murugan AK, Hong NT, Fukui Y, Munirajan AK, Tsuchida N. Oncogenic mutations of the PIK3CA gene in head and neck squamous cell carcinomas. Int J Oncol. 2008;32(1):101–11.

    CAS  PubMed  Google Scholar 

  21. Hermsen M, Guervos MA, Meijer G, Baak J, van Diest P, Marcos CA, et al. New chromosomal regions with high-level amplifications in squamous cell carcinomas of the larynx and pharynx, identified by comparative genomic hybridization. J Pathol. 2001;194(2):177–82.

    Article  CAS  PubMed  Google Scholar 

  22. Sun PC, Uppaluri R, Schmidt AP, Pashia ME, Quant EC, Sunwoo JB, et al. Transcript map of the 8p23 putative tumor suppressor region. Genomics. 2001;75(1–3):17–25. doi:10.1006/geno.2001.6587.

    Article  CAS  PubMed  Google Scholar 

  23. Ma C, Quesnelle KM, Sparano A, Rao S, Park MS, Cohen MA, et al. Characterization CSMD1 in a large set of primary lung, head and neck, breast and skin cancer tissues. Cancer Biol Ther. 2009;8(10):907–16.

    Article  CAS  PubMed  Google Scholar 

  24. \Akiyama Y, Watkins N, Suzuki H, Jair KW, van Engeland M, Esteller M, et al. GATA-4 and GATA-5 transcription factor genes and potential downstream antitumor target genes are epigenetically silenced in colorectal and gastric cancer. Mol Cell Biol. 2003;23(23):8429–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hellebrekers DM, Lentjes MH, van den Bosch SM, Melotte V, Wouters KA, Daenen KL, et al. GATA4 and GATA5 are potential tumor suppressors and biomarkers in colorectal cancer. Clin Cancer Res. 2009;15(12):3990–7. doi:10.1158/1078-0432.CCR-09-0055.

    Article  CAS  PubMed  Google Scholar 

  26. Zheng R, Blobel GA. GATA Transcription factors and cancer. Genes & Cancer. 2010;1(12):1178–88. doi:10.1177/1947601911404223.

    Article  CAS  Google Scholar 

  27. Seibold S, Rudroff C, Weber M, Galle J, Wanner C, Marx M. Identification of a new tumor suppressor gene located at chromosome 8p21.3–22. FASEB J. 2003;17(9):1180–2. doi:10.1096/fj.02-0934fje.

    CAS  PubMed  Google Scholar 

  28. Zhou X, Temam S, Oh M, Pungpravat N, Huang BL, Mao L, et al. Global expression-based classification of lymph node metastasis and extracapsular spread of oral tongue squamous cell carcinoma. Neoplasia. 2006;8(11):925–32. doi:10.1593/neo.06430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ye H, Pungpravat N, Huang BL, Muzio LL, Mariggio MA, Chen Z, et al. Genomic assessments of the frequent loss of heterozygosity region on 8p21.3–p22 in head and neck squamous cell carcinoma. Cancer Genet Cytogenet. 2007;176(2):100–6. doi:10.1016/j.cancergencyto.2007.04.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Squire JA, Bayani J, Luk C, Unwin L, Tokunaga J, MacMillan C, et al. Molecular cytogenetic analysis of head and neck squamous cell carcinoma: by comparative genomic hybridization, spectral karyotyping, and expression array analysis. Head Neck. 2002;24(9):874–87. doi:10.1002/hed.10122.

    Article  PubMed  Google Scholar 

  31. da Silva Veiga LC, Bergamo NA, dos Reis PP, Kowalski LP, Rogatto SR. DNA gains at 8q23.2: a potential early marker in head and neck carcinomas. Cancer Genet Cytogenet. 2003;146(2):110–5.

    Article  PubMed  Google Scholar 

  32. Saranath D, Panchal RG, Nair R, Mehta AR, Sanghavi V, Sumegi J, et al. Oncogene amplification in squamous cell carcinoma of the oral cavity. Jpn J Cancer Res. 1989;80(5):430–7.

    Article  CAS  PubMed  Google Scholar 

  33. Vora HH, Shah NG, Patel DD, Trivedi TI, Chikhlikar PR. Prognostic significance of biomarkers in squamous cell carcinoma of the tongue: multivariate analysis. J Surg Oncol. 2003;82(1):34–50. doi:10.1002/jso.10183.

    Article  PubMed  Google Scholar 

  34. Babic AM, Kireeva ML, Kolesnikova TV, Lau LF. CYR61, a product of a growth factor-inducible immediate early gene, promotes angiogenesis and tumor growth. Proc Natl Acad Sci U S A. 1998;95(11):6355–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hashimoto Y, Shindo-Okada N, Tani M, Takeuchi K, Toma H, Yokota J. Identification of genes differentially expressed in association with metastatic potential of K-1735 murine melanoma by messenger RNA differential display. Cancer Res. 1996;56(22):5266–71.

    CAS  PubMed  Google Scholar 

  36. Soon LL, Yie TA, Shvarts A, Levine AJ, Su F, Tchou-Wong KM. Overexpression of WISP-1 down-regulated motility and invasion of lung cancer cells through inhibition of Rac activation. J Biol Chem. 2003;278(13):11465–70. doi:10.1074/jbc.M210945200.

    Article  CAS  PubMed  Google Scholar 

  37. Canel M, Secades P, Rodrigo JP, Cabanillas R, Herrero A, Suarez C, et al. Overexpression of focal adhesion kinase in head and neck squamous cell carcinoma is independent of fak gene copy number. Clin Cancer Res. 2006;12(11 Pt 1):3272–9. doi:10.1158/1078-0432.CCR-05-1583.

    Article  CAS  PubMed  Google Scholar 

  38. Owens LV, Xu L, Craven RJ, Dent GA, Weiner TM, Kornberg L, et al. Overexpression of the focal adhesion kinase (p125FAK) in invasive human tumors. Cancer Research. 1995;55(13):2752–5.

    CAS  PubMed  Google Scholar 

  39. Schuuring E. The involvement of the chromosome 11q13 region in human malignancies: cyclin D1 and EMS1 are two new candidate oncogenes—a review. Gene. 1995;159(1):83–96.

    Article  CAS  PubMed  Google Scholar 

  40. Gibcus JH, Menkema L, Mastik MF, Hermsen MA, de Bock GH, van Velthuysen ML, et al. Amplicon mapping and expression profiling identify the Fas-associated death domain gene as a new driver in the 11q13.3 amplicon in laryngeal/pharyngeal cancer. Clin Cancer Res. 2007;13(21):6257–66.

    Article  CAS  PubMed  Google Scholar 

  41. Lese CM, Rossie KM, Appel BN, Reddy JK, Johnson JT, Myers EN, et al. Visualization of INT2 and HST1 amplification in oral squamous cell carcinomas. Genes Chromosomes Cancer. 1995;12(4):288–95.

    Article  CAS  PubMed  Google Scholar 

  42. Parikh RA, White JS, Huang X, Schoppy DW, Baysal BE, Baskaran R, et al. Loss of distal 11q is associated with DNA repair deficiency and reduced sensitivity to ionizing radiation in head and neck squamous cell carcinoma. Genes Chromosomes Cancer. 2007;46(8):761–75. doi:10.1002/gcc.20462.

    Article  CAS  PubMed  Google Scholar 

  43. Huang Q, Yu GP, McCormick SA, Mo J, Datta B, Mahimkar M, et al. Genetic differences detected by comparative genomic hybridization in head and neck squamous cell carcinomas from different tumor sites: construction of oncogenetic trees for tumor progression. Genes, Chromosomes and Cancer. 2002;34(2):224–33. doi:10.1002/gcc.10062.

    Article  CAS  PubMed  Google Scholar 

  44. Leemans CR, Braakhuis BJ, Brakenhoff RH. The molecular biology of head and neck cancer. Nat Rev Cancer. 2011;11(1):9–22.

    Article  CAS  PubMed  Google Scholar 

  45. Nix PA, Greenman J, Cawkwell L, Stafford ND. Defining the criteria for radioresistant laryngeal cancer. Clin Otolaryngol Allied Sci. 2004;29(6):705–8. doi:10.1111/j.1365-2273.2004.00861.x.

    Article  CAS  PubMed  Google Scholar 

  46. Jeuken J, Cornelissen S, Boots-Sprenger S, Gijsen S, Wesseling P. Multiplex ligation-dependent probe amplification: a diagnostic tool for simultaneous identification of different genetic markers in glial tumors. J Mol Diagn. 2006;8(4):433–43. doi:10.2353/jmoldx.2006.060012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Artur Ferreira, Director of Maxillofacial Surgery Unit from Coimbra Hospital and University Centre, for the contribution in the collection of the samples. This work was supported in part by CIMAGO (Center of Investigation on Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra).

Conflicts of interest

W. Rifi and S. Savola are employed by MRC-Holland, manufacturer of commercially available MLPA probemixes. All other authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Marques Carreira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ribeiro, I.P., Marques, F., Caramelo, F. et al. Genetic imbalances detected by multiplex ligation-dependent probe amplification in a cohort of patients with oral squamous cell carcinoma—the first step towards clinical personalized medicine. Tumor Biol. 35, 4687–4695 (2014). https://doi.org/10.1007/s13277-014-1614-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-1614-9

Keywords

Navigation