Skip to main content

Advertisement

Log in

The function, mechanisms, and role of the genes PTEN and TP53 and the effects of asbestos in the development of malignant mesothelioma: a review focused on the genes' molecular mechanisms

  • Review
  • Published:
Tumor Biology

Abstract

The malignant mesothelioma is an aggressive form of cancer with a mean survival rate of less than a year. Moreover, environmental exposure to minerals is an important factor in the development of malignant mesothelioma (MM), especially the mineral asbestos, which has a well-documented role in MM, and more recently, the mineral erionite has been proven to be a strong carcinogenic inducer of MM. In addition, the virus simian virus 40 has been implicated as a co-carcinogenic player in MM. However, the molecular mechanisms involved in the pathogenesis of this cancer are still not fully understood. Indeed, it is known that several genes are altered or mutated in MM, among those are p16INK4A, p14ARF, and neurofibromatosis type II. Furthermore, TP53 has been reported to be mutated in the majority of the cancers; however, in MM, it is very uncommon mutations in this gene. Also, the PTEN gene has been shown to play an important role in endometrial cancer and glioblastoma, although the role of PTEN in MM has yet to be established. Taken altogether, this review focuses on the historical aspects, molecular mechanisms, interaction with other genes and proteins, and the role of these genes in MM. Lastly, this review questions the cancer theory of the two hits because the functions of both PTEN and TP53 are not fully explained by this theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mott FE. Mesothelioma: a review. Ochsner J. 2012;12(1):70–9. doi:10.1043/1524-5012-12.1.70.

    PubMed Central  PubMed  Google Scholar 

  2. Fennell DA. Genetics and molecular biology of mesothelioma. Recent Results Cancer Res. 2011;189:149–67. doi:10.1007/978-3-642-10862-4_9.

    CAS  PubMed  Google Scholar 

  3. van Meerbeeck JP, Gaafar R, Manegold C, Van Klaveren RJ, Van Marck EA, Vincent M, et al. Randomized phase III study of cisplatin with or without raltitrexed in patients with malignant pleural mesothelioma: an intergroup study of the European Organisation for Research and Treatment of Cancer Lung Cancer Group and the National Cancer Institute of Canada. J Clin Oncol. 2005;23(28):6881–9.

    PubMed  Google Scholar 

  4. Tan C, Treasure T. Mesothelioma: time to take stock. J R Soc Med. 2005;98(10):455–8. doi:10.1258/jrsm.98.10.455.

    PubMed Central  PubMed  Google Scholar 

  5. ATSDR. Public health statement—asbestos. Atlanta: Agency for Toxic and Disease Registry; 2001.

    Google Scholar 

  6. Yang H, Testa J, Carbone M. Mesothelioma epidemiology, carcinogenesis, and pathogenesis. Curr Treat Options in Oncol. 2008;9(2–3):147–57. doi:10.1007/s11864-008-0067-z.

    Google Scholar 

  7. Eom M, Abdul-Ghafar J, Park SMHJ, Hong SW, Kwon KY, Ko ES, et al. No detection of simian virus 40 in malignant mesothelioma in Korea. Korean J Pathol. 2013;47(2):124–9.

    PubMed Central  PubMed  Google Scholar 

  8. Qi F, Carbone M, Yang H, Gaudino G. Simian virus 40 transformation, malignant mesothelioma and brain tumors. Expert Rev Respir Med. 2013;5(5):683–97. doi:10.1586/ers.11.51.

    Google Scholar 

  9. Jasani B, Gibbs A. Mesothelioma not associated with asbestos exposure. Arch Pathol Lab Med. 2012;136(3):262–7. doi:10.5858/arpa.2011-0039-RA.

    PubMed  Google Scholar 

  10. Kroczynska B, Cutrone R, Bocchetta M, Yang H, Elmishad AG, Vacek P, et al. Crocidolite asbestos and SV40 are cocarcinogens in human mesothelial cells and in causing mesothelioma in hamsters. Proc Natl Acad Sci. 2006;103(38):14128–33. doi:10.1073/pnas.0604544103.

    CAS  PubMed  Google Scholar 

  11. Manfredi JJ, Dong J, Liu W-J, Resnick-Silverman L, Qiao R, Chahinian P, et al. Evidence against a role for SV40 in human mesothelioma. Cancer Res. 2005;65(7):2602–9.

    CAS  PubMed  Google Scholar 

  12. Jaurand M-C, Fleury-Feith J. Pathogenesis of malignant pleural mesothelioma. Respirology. 2005;10(1):2–8. doi:10.1111/j.1440-1843.2005.00694.x.

    PubMed  Google Scholar 

  13. Jean D, Daubriac J, Le Pimpec-Barthes F, Galateau-Salle F, Jaurand M-C. Molecular changes in mesothelioma with an impact on prognosis and treatment. Arch Pathol Lab Med. 2012;136(3):277–93. doi:10.5858/arpa.2011-0215-RA.

    CAS  PubMed  Google Scholar 

  14. Hu Q, Akatsuka S, Yamashita Y, Ohara H, Nagai H, Okazaki Y, et al. Homozygous deletion of CDKN2A/2B is a hallmark of iron-induced high-grade rat mesothelioma. Lab Investig. 2010;90(3):360–73.

    CAS  PubMed  Google Scholar 

  15. Ladanyi M. Implications of P16/CDKN2A deletion in pleural mesotheliomas. Lung Cancer. 2005;49(Supplement 1(0)):S95–S8. doi:10.1016/j.lungcan.2005.03.017.

    PubMed  Google Scholar 

  16. Sekido Y, Pass HI, Bader S, Mew DJY, Christman MF, Gazdar AF, et al. Neurofibromatosis Type 2 (NF2) gene is somatically mutated in mesothelioma but not in lung cancer. Cancer Res. 1995;55(6):1227–31.

    CAS  PubMed  Google Scholar 

  17. Li W, You L, Cooper J, Schiavon G, Pepe-Caprio A, Zhou L, et al. Merlin/NF2 suppresses tumorigenesis by inhibiting the E3 ubiquitin ligase CRL4DCAF1 in the nucleus. Cell. 2010;140(4):477–90. doi:10.1016/j.cell.2010.01.029.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Suzuki Y, Murakami H, Kawaguchi K, Tanigushi T, Fujii M, Shinjo K, et al. Activation of the PI3K-AKT pathway in human malignant mesothelioma cells. Mol Med Rep. 2009;2(2):181–8.

    CAS  PubMed  Google Scholar 

  19. Altomare DA, You H, Xiao GH, Ramos-Nino ME, Skele KL, De Rienzo A, et al. Human and mouse mesotheliomas exhibit elevated AKT/PKB activity, which can be targeted pharmacologically to inhibit tumor cell growth. Oncogene. 2005;24(40):6080–9. doi:10.1038/sj.onc.1208744.

    CAS  PubMed  Google Scholar 

  20. Maehama T, Dixon JE. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem. 1998;273(22):13375–8. doi:10.1074/jbc.273.22.13375.

    CAS  PubMed  Google Scholar 

  21. Wilson SM, Barbone D, Yang T-M, Jablons DM, Bueno R, Sugarbaker DJ, et al. mTOR mediates survival signals in malignant mesothelioma grown as tumor fragment spheroids. Am J Respir Cell Mol Biol. 2008;39(5):576–83. doi:10.1165/rcmb.2007-0460OC.

    CAS  PubMed  Google Scholar 

  22. Agarwal V, Campbell A, Beaumont K, Cawkwell L, Lind M. PTEN protein expression in malignant pleural mesothelioma. Tumor Biol. 2012;34(2):847–51. doi:10.1007/s13277-012-0615-9.

    Google Scholar 

  23. Opitz I, Soltermann A, Abaecherli M, Hinterberger M, Probst-Hensch N, Stahel R, et al. PTEN expression is a strong predictor of survival in mesothelioma patients. Eur J Cardiothorac Surg. 2008;33(3):501–5. doi:10.1016/j.ejcts.2007.09.045.

    Google Scholar 

  24. Frezza C, Martins CP. From tumor prevention to therapy: empowering p53 to fight back. Drug Resist Updat. 2012;15(5):258–67. Reviews and commentaries in antimicrobial and anticancer chemotherapy.

    CAS  PubMed  Google Scholar 

  25. Kafiri G, Thomas DM, Shepherd NA, Krausz T, Lane DP, Hall PA. p53 expression is common in malignant mesothelioma. Histopathology. 1992;21(4):331–4. doi:10.1111/j.1365-2559.1992.tb00403.x.

    CAS  PubMed  Google Scholar 

  26. Freeman DJ, Li AG, Wei G, Li H-H, Kertesz N, Lesche R, et al. PTEN tumor suppressor regulates p53 protein levels and activity through phosphatase-dependent and -independent mechanisms. Cancer Cell. 2003;3(2):117–30. doi:10.1016/S1535-6108(03)00021-7.

    CAS  PubMed  Google Scholar 

  27. Salmena L, Carracedo A, Pandolfi PP. Tenets of PTEN tumor suppression. Cell. 2008;133(3):403–14.

    CAS  PubMed  Google Scholar 

  28. Heyn H, Carmona FJ, Gomez A, Ferreira HJ, Bell JT, Sayols S, et al. DNA methylation profiling in breast cancer discordant identical twins identifies DOK7 as novel epigenetic biomarker. Carcinogenesis. 2013;34(1):102–8. doi:10.1093/carcin/bgs321.

    CAS  PubMed  Google Scholar 

  29. Das PM, Singal R. DNA methylation and cancer. J Clin Oncol. 2004;22(22):4632–42. doi:10.1200/jco.2004.07.151.

    CAS  PubMed  Google Scholar 

  30. Esteller M, Corn PG, Baylin SB, Herman JG. A gene hypermethylation profile of human cancer. Cancer Res. 2001;61(8):3225–9.

    CAS  PubMed  Google Scholar 

  31. Goto Y, Shinjo K, Kondo Y, Shen L, Toyota M, Suzuki H, et al. Epigenetic profiles distinguish malignant pleural mesothelioma from lung adenocarcinoma. Cancer Res. 2009;69(23):9073–82. doi:10.1158/0008-5472.can-09-1595.

    CAS  PubMed  Google Scholar 

  32. Hama R, Watanabe Y, Shinada K, Yamada Y, Ogata Y, Yoshida Y, et al. Characterization of DNA hypermethylation in two cases of peritoneal mesothelioma. Tumor Biol. 2012;33(6):2031–40. doi:10.1007/s13277-012-0462-8.

    Google Scholar 

  33. LaDou J. The asbestos cancer epidemic. Environ Health Perspect. 2004;112(3):285–90. doi:10.2307/3435648.

    PubMed Central  PubMed  Google Scholar 

  34. McDonald AD, McDonald JC. Mesothelioma after crocidolite exposure during gas mask manufacture. Environ Res. 1978;17(3):340–6. doi:10.1016/0013-9351(78)90038-5.

    CAS  PubMed  Google Scholar 

  35. Hansen J, de Klerk NH, Musk AW, Hobbs MS. Environmental exposure to crocidolite and mesothelioma: exposure-response relationships. Am J Respir Crit Care Med. 1998;157(1):69–75.

    CAS  PubMed  Google Scholar 

  36. Luo S, Liu X, Mu S, Tsai SP, Wen CP. Asbestos related diseases from environmental exposure to crocidolite in Da-yao, China. I. Review of exposure and epidemiological data. Occup Environ Med. 2003;60(1):35–42. doi:10.1136/oem.60.1.35.

    CAS  PubMed  Google Scholar 

  37. Powers A, Carbone M. The role of environmental carcinogens, viruses and genetic predisposition in the pathogenesis of mesothelioma. Cancer Biol Ther. 2002;1(4):348–53.

    CAS  PubMed  Google Scholar 

  38. INCA: INdC-. Amianto http://www.inca.gov.br/conteudo_view.asp?ID=15 (2013). Accessed 25 Jan 2013.

  39. Pedra F, Tambellini AT, Pereira BB, Carioca da Costa AC, Albuquerque de Castro H. Mesothelioma mortality in Brazil, 1980–2003. Int J Occup Environ Health. 2008;14(3):170–5.

    PubMed  Google Scholar 

  40. Roggli VL, Oury TD, Moffat EJ. Malignant mesothelioma in women. Anat Pathol. 1997;2:147–63.

    CAS  PubMed  Google Scholar 

  41. Price B, Ware A. Mesothelioma trends in the United States: an update based on surveillance, epidemiology, and end results program data for 1973 through 2003. Am J Epidemiol. 2004;159(2):107–12. doi:10.1093/aje/kwh025.

    PubMed  Google Scholar 

  42. Mesothelioma incidence statistics: Cancer Research Center. http://www.cancerresearchuk.org/cancer-info/cancerstats/types/Mesothelioma/incidence/incidence (2012). Accessed 9 Jan 2013

  43. Magnani C, Agudo A, Gonzalez CA, Andrion A, Calleja A, Chellini E, et al. Multicentric study on malignant pleural mesothelioma and non-occupational exposure to asbestos. Br J Cancer. 2000;83(1):104–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Yang H, Bocchetta M, Kroczynska B, Elmishad AG, Chen Y, Liu Z, et al. TNF-α inhibits asbestos-induced cytotoxicity via a NF-κB-dependent pathway, a possible mechanism for asbestos-induced oncogenesis. Proc Natl Acad Sci. 2006;103(27):10397–402. doi:10.1073/pnas.0604008103.

    CAS  PubMed  Google Scholar 

  45. Carbone M, Yang H. Molecular pathways: targeting mechanisms of asbestos and erionite carcinogenesis in mesothelioma. Clin Cancer Res. 2013;18(3):598–604. doi:10.1158/1078-0432.CCR-11-2259.

    Google Scholar 

  46. Shukla A, Gulumian M, Hei TK, Kamp D, Rahman Q, Mossman BT. Multiple roles of oxidants in the pathogenesis of asbestos-induced diseases. Free Radic Biol Med. 2003;34(9):1117–29. doi:10.1016/S0891-5849(03)00060-1.

    CAS  PubMed  Google Scholar 

  47. Xu A, Zhou H, Yu DZ, Hei TK. Mechanisms of the genotoxicity of crocidolite asbestos in mammalian cells: implication from mutation patterns induced by reactive oxygen species. Environ Health Perspect. 2002;110(10):1003–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Weiner S, Neragi-Miandoab S. Pathogenesis of malignant pleural mesothelioma and the role of environmental and genetic factors. J Carcinog. 2008;7(1):3.

    PubMed Central  PubMed  Google Scholar 

  49. Virta RL. Mineral commodity profiles-asbestos. U.S. Geological Survey, Reston. http://pubs.usgs.gov/circ/2005/1255/kk/ (2005). Accessed 14 Apr 2013.

  50. Tweedale G. Asbestos and its lethal legacy. Nat Rev Cancer. 2002;2(4):311–4.

    CAS  PubMed  Google Scholar 

  51. Levine AJ, Oren M. The first 30 years of p53: growing ever more complex. Nat Rev Cancer. 2009;9(10):749–58.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Linzer DIH, Maltzman W, Levine AJ. The SV40 a gene product is required for the production of a 54,000 MW cellular tumor antigen. Virology. 1979;98(2):308–18. doi:10.1016/0042-6822(79)90554-3.

    CAS  PubMed  Google Scholar 

  53. Ben David Y, Prideaux VR, Chow V, Benchimol S, Berstein A. Inactivation of the p53 oncogene by internal deletion or retroviral integration in erythroleukemic cell lines induced by Friend leukemia virus. Oncogene. 1988;3(2):179–85.

    CAS  PubMed  Google Scholar 

  54. Wolf D, Rotter V. Inactivation of p53 gene expression by an insertion of Moloney murine leukemia virus-like DNA sequences. Mol Cell Biol. 1984;4(7):1402–10. doi:10.1128/mcb.4.7.1402.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Mowat M, Cheng A, Kimura N, Bernstein A, Benchimol S. Rearrangements of the cellular p53 gene in erythroleukaemic cells transformed by Friend virus. Nature. 1985;314(6012):633–6.

    CAS  PubMed  Google Scholar 

  56. Vogelstein B, Lane D. Surfing the p53 network. Nature. 2000;408(6810):307.

    CAS  PubMed  Google Scholar 

  57. Srivastava S, Zou Z, Pirollo K, Blattner W, Chang EH. Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li-Fraumeni syndrome. Nature. 1990;348(6303):747–9. doi:10.1038/348747a0.

    CAS  PubMed  Google Scholar 

  58. Shaw P, Bovey R, Tardy S, Sahli R, Sordat B, Costa J. Induction of apoptosis by wild-type p53 in a human colon tumor-derived cell line. Proc Natl Acad Sci. 1992;89(10):4495–9.

    CAS  PubMed  Google Scholar 

  59. Yonish-Rouach E, Resnftzky D, Lotem J, Sachs L, Kimchi A, Oren M. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature. 1991;352(6333):345.

    CAS  PubMed  Google Scholar 

  60. Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J, Lintault L, et al. Restoration of p53 function leads to tumour regression in vivo. Nature. 2007;445(7128):661.

    CAS  PubMed  Google Scholar 

  61. Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V, et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature. 2007;445(7128):656.

    CAS  PubMed  Google Scholar 

  62. Menendez D, Inga A, Resnick MA. The expanding universe of p53 targets. Nat Rev Cancer. 2009;9(10):724–37.

    CAS  PubMed  Google Scholar 

  63. Hermeking H. p53 enters the microRNA world. Cancer Cell. 2007;12(5):414–8. doi:10.1016/j.ccr.2007.10.028.

    CAS  PubMed  Google Scholar 

  64. Oliner JD, Pietenpol JA, Thiagalingam S, Gyuris J, Kinzler KW, Vogelstein B. Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature. 1993;362(6423):857–60.

    CAS  PubMed  Google Scholar 

  65. Chène P. Inhibiting the p53–MDM2 interaction: an important target for cancer therapy. Nat Rev Cancer. 2003;3(2):102.

    PubMed  Google Scholar 

  66. Shangary S, Wang S. Targeting the MDM2-p53 interaction for cancer therapy. Clin Cancer Res. 2008;14(17):5318–24. doi:10.1158/1078-0432.ccr-07-5136.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Peng Z. Current status of gendicine in China: recombinant human Ad-p53 agent for treatment of cancers. Hum Gene Ther. 2005;16(9):16–27.

    Google Scholar 

  68. Metcalf RA, Welsh JA, Bennett WP, Seddon MB, Lehman TA, Pelin K, et al. p53 and Kirsten-ras mutations in human mesothelioma cell lines. Cancer Res. 1992;52(9):2610–5.

    CAS  PubMed  Google Scholar 

  69. Sekido Y. Molecular pathogenesis of malignant mesothelioma. Carcinogenesis. 2013;34(7):1413–9. doi:10.1093/carcin/bgt166.

    CAS  PubMed  Google Scholar 

  70. Vivo C, Lecomte C, Levy F, Leroy K, Kirova Y, Renier A, et al. Cell cycle checkpoint status in human malignant mesothelioma cell lines: response to gamma radiation. Br J Cancer. 2003;88(3):388–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Murthy SS, Testa JR. Asbestos, chromosomal deletions, and tumor suppressor gene alterations in human malignant mesothelioma. J Cell Physiol. 1999;180(2):150–7. doi:10.1002/(sici)1097-4652(199908)180:2<150::aid-jcp2>3.0.co;2-h.

    CAS  PubMed  Google Scholar 

  72. Steck PA, Pershouse MA, Jasser SA, Yung WKA, Lin H, Ligon AH, et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet. 1997;15(4):356–62.

    CAS  PubMed  Google Scholar 

  73. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science. 1997;275(5308):1943–7.

    CAS  PubMed  Google Scholar 

  74. Song MS, Salmena L, Pandolfi PP. The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol. 2012;13(5):283–96.

    CAS  PubMed  Google Scholar 

  75. Carracedo A, Alimonti A, Pandolfi PP. PTEN Level in tumor suppression: how much is too little? Cancer Res. 2011;71(3):629–33. doi:10.1158/0008-5472.can-10-2488.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Cristofano AD, Pesce B, Cordon-Cardo C, Pandolfi PP. Pten is essential for embryonic development and tumour suppression. Nat Genet. 1998;19(4):348–55. doi:10.1038/1235.

    PubMed  Google Scholar 

  77. Suzuki A, de la Pompa JL, Stambolic V, Elia AJ, Sasaki T, Barrantes IDB. High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor gene in mice. Curr Biol. 1998;8(21):1169–78.

    CAS  PubMed  Google Scholar 

  78. Whang YE, Wu X, Suzuki H, Reiter RE, Tran C, Robert L, et al. Inactivation of the tumor suppressor PTEN/MMAC1 in advanced human prostate cancer through loss of expression. Proc Natl Acad Sci. 1998;95(9):5246–50.

    CAS  PubMed  Google Scholar 

  79. Lachyankar MB, Sultana N, Schonhoff CM, Mitra P, Poluha W, Lambert S, et al. A role for nuclear PTEN in neuronal differentiation. J Neurosci. 2000;20(4):1404–13.

    CAS  PubMed  Google Scholar 

  80. Ginn-Pease ME, Eng C. Increased nuclear phosphatase and tensin homologue deleted on chromosome 10 is associated with G0-G1 in MCF-7 Cells. Cancer Res. 2003;63(2):282–6.

    CAS  PubMed  Google Scholar 

  81. Déléris P, Bacqueville D, Gayral SP, Carrez L, Salles J-P, Perret B, et al. SHIP-2 and PTEN are expressed and active in vascular smooth muscle cell nuclei, but only SHIP-2 is associated with nuclear speckles. J Biol Chem. 2003;278(40):38884–91.

    PubMed  Google Scholar 

  82. Trotman LC, Niki M, Dotan ZA, Koutcher JA, Di Cristofano A, Xiao A, et al. Pten dose dictates cancer progression in the prostate. PLoS Biol. 2003;1(3):e59.

    PubMed Central  PubMed  Google Scholar 

  83. Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 2007;133(2):647–58.

    CAS  PubMed  Google Scholar 

  84. García JM, Silva J, Peña C, Garcia V, Rodríguez R, Cruz MA, et al. Promoter methylation of the PTEN gene is a common molecular change in breast cancer. Genes Chromosom Cancer. 2004;41(2):117–24. doi:10.1002/gcc.20062.

    PubMed  Google Scholar 

  85. Torres J, Pulido R. The tumor suppressor PTEN is phosphorylated by the protein kinase CK2 at its C terminus: implications for PTEN stability to proteasome-mediated degradation. J Biol Chem. 2001;276(2):993–8. doi:10.1074/jbc.M009134200.

    CAS  PubMed  Google Scholar 

  86. Lee S-R, Yang K-S, Kwon J, Lee C, Jeong W, Rhee SG. Reversible inactivation of the tumor suppressor PTEN by H2O2. J Biol Chem. 2002;277(23):20336–42. doi:10.1074/jbc.M111899200.

    CAS  PubMed  Google Scholar 

  87. Leslie NR, Bennett D, Lindsay YE, Stewart H, Gray A, Downes CP. Redox regulation of PI 3-kinase signalling via inactivation of PTEN. EMBO J. 2003;22(20):5501–10.

    CAS  PubMed  Google Scholar 

  88. Faivre S, Kroemer G, Raymond E. Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov. 2006;5(8):671–88.

    CAS  PubMed  Google Scholar 

  89. Borders EB, Bivona C, Medina PJ. Mammalian target of rapamycin: biological function and target for novel anticancer agents. Am J Health Syst Pharm. 2010;67(24):2095–106. doi:10.2146/ajhp100020.

    CAS  PubMed  Google Scholar 

  90. Holmes D. PI3K pathway inhibitors approach junction. Nat Rev Drug Discov. 2011;10(8):563–4.

    CAS  PubMed  Google Scholar 

  91. van der Heijden MS, Bernards R. Inhibition of the PI3K pathway: hope we can believe in? Clinical Cancer Research. 2010. doi:10.1158/1078-0432.ccr-09-3004.

    PubMed  Google Scholar 

  92. Shen WH, Balajee AS, Wang J, Wu H, Eng C, Pandolfi PP, et al. Essential role for nuclear PTEN in maintaining chromosomal integrity. Cell. 2007;128(1):157–70.

    CAS  PubMed  Google Scholar 

  93. Chung J-H, Ostrowski MC, Romigh T, Minaguchi T, Waite KA, Eng C. The ERK1/2 pathway modulates nuclear PTEN-mediated cell cycle arrest by cyclin D1 transcriptional regulation. Hum Mol Genet. 2006;15(17):2553–9. doi:10.1093/hmg/ddl177.

    CAS  PubMed  Google Scholar 

  94. Li AG, Piluso LG, Cai X, Wei G, Sellers WR, Liu X. Mechanistic insights into maintenance of high p53 acetylation by PTEN. Mol Cell. 2006;23(4):575–87.

    PubMed  Google Scholar 

  95. Mayo LD, Dixon JE, Durden DL, Tonks NK, Donner DB. PTEN protects p53 from Mdm2 and sensitizes cancer cells to chemotherapy. J Biol Chem. 2002;277(7):5484–9. doi:10.1074/jbc.M108302200.

    CAS  PubMed  Google Scholar 

  96. Mayo LD, Donner DB. A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of MDM2 from the cytoplasm to the nucleus. Proc Natl Acad Sci. 2001;98(20):11598–603. doi:10.1073/pnas.181181198.

    CAS  PubMed  Google Scholar 

  97. Berger AH, Knudson AG, Pandolfi PP. A continuum model for tumour suppression. Nature. 2011;476(7359):163–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Alimonti A, Nardella C, Chen Z, Clohessy JG, Carracedo A, Trotman LC, et al. A novel type of cellular senescence that can be enhanced in mouse models and human tumor xenografts to suppress prostate tumorigenesis. J Clin Invest. 2010;120(3):681–93. doi:10.1172/jci40535.

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Nardella C, Clohessy JG, Alimonti A, Pandolfi PP. Pro-senescence therapy for cancer treatment. Nat Rev Cancer. 2011;11(7):503–11. doi:10.1038/nrc3057.

    CAS  PubMed  Google Scholar 

  100. Tanaka M, Rosser CJ, Grossman HB. PTEN gene therapy induces growth inhibition and increases efficacy of chemotherapy in prostate cancer. Cancer Detect Prev. 2005;29(2):170–4.

    CAS  PubMed  Google Scholar 

  101. Saito Y, Swanson X, Mhashilkar AM, Oida Y, Schrock R, Branch CD, et al. Adenovirus-mediated transfer of the PTEN gene inhibits human colorectal cancer growth in vitro and in vivo. Gene Ther. 2003;10(23):1961–9.

    CAS  PubMed  Google Scholar 

  102. Garland LL, Rankin C, Gandara DR, Rivkin SE, Scott KM, Nagle RB, et al. Phase II study of erlotinib in patients with malignant pleural mesothelioma: a Southwest Oncology Group study. J Clin Oncol. 2007;25(17):2406–13. doi:10.1200/jco.2006.09.7634.

    CAS  PubMed  Google Scholar 

  103. Knudson AJ. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci. 1971;68(4):820–3.

    PubMed  Google Scholar 

  104. Fung YK, Murphree AL, T'Ang A, Qian J, Hinrichs SH, Benedict WF. Structural evidence for the authenticity of the human retinoblastoma gene. Science. 1987;236(4809):1657–61.

    CAS  PubMed  Google Scholar 

  105. Venkatachalam S, Shi Y-P, Jones SN, Vogel H, Bradley A, Pinkel D, et al. Retention of wild-type p53 in tumors from p53 heterozygous mice: reduction of p53 dosage can promote cancer formation. EMBO J. 1998;17(16):4657–67.

    CAS  PubMed  Google Scholar 

  106. Varley JM, Evans DG, Birch JM. Li-Fraumeni syndrome—a molecular and clinical review. Br J Cancer. 1997;1997(76):1–14.

    Google Scholar 

  107. Alimonti A, Carracedo A, Clohessy JG, Trotman LC, Nardella C, Egia A, et al. Subtle variations in Pten dose determine cancer susceptibility. Nat Genet. 2010;42(5):454–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Rusch VW, Venkatraman E. The importance of surgical staging in the treatment of malignant pleural mesothelioma. J Thorac Cardiovasc Surg. 1996;111(4):815–26.

    CAS  PubMed  Google Scholar 

  109. Bölükbasa S, Manegold C, Eberlein M, Bergmann T, Fisseler-Eckhoff A, Schirren J. Survival after trimodality therapy for malignant pleural mesothelioma: radical pleurectomy, chemotherapy with cisplatin/pemetrexed and radiotherapy. Lung Cancer. 2011;71(1):75–81. doi:10.1016/j.lungcan.2009.08.019.

    Google Scholar 

  110. Treasure T, Sedrakyan A. Pleural mesothelioma: little evidence, still time to do trials. Lancet. 2004;364(9440):1183–5. doi:10.1016/S0140-6736(04)17108-0.

    PubMed  Google Scholar 

  111. Bissett D, Macbeth FR, Cram I. The role of palliative radiotherapy in malignant mesothelioma. Clin Oncol. 1991;3(6):315–7. doi:10.1016/S0936-6555(05)80582-5.

    CAS  Google Scholar 

  112. Hazarika M, White Jr RM, Booth BP, Wang YC, Ham DY, Liang CY, et al. Pemetrexed in malignant pleural mesothelioma. Clin Cancer Res. 2005;11(3):982.

    CAS  PubMed  Google Scholar 

  113. Berghmans T, Paesmans M, Lalami Y, Louviaux I, Luce S, Mascaux C. Activity of chemotherapy and immunotherapy on malignant mesothelioma: a systematic review of the literature with meta-analysis. Lung Cancer. 2002;38(2):111–21 (Amsterdam, Netherlands).

    CAS  PubMed  Google Scholar 

  114. Fizazi K, Ducreux M, Ruffié P, Bonnay M, Daniel C, Soria J-C, et al. Phase I, dose-finding, and pharmacokinetic study of raltitrexed combined with oxaliplatin in patients with advanced cancer. J Clin Oncol. 2000;18(11):2293–300.

    CAS  PubMed  Google Scholar 

  115. Fizazi K, Doubre H, Le Chevalier T, Riviere A, Viala J, Daniel C, et al. Combination of raltitrexed and oxaliplatin is an active regimen in malignant mesothelioma: results of a phase II study. J Clin Oncol. 2003;21(2):349–54. doi:10.1200/jco.2003.05.123.

    CAS  PubMed  Google Scholar 

  116. Vogelzang NJ, Rusthoven JJ, Symanowski J, Denham C, Kaukel E, Ruffie P, et al. Phase III study of pemetrexed in combination with cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma. J Clin Oncol. 2003;21(14):2636–44. doi:10.1200/jco.2003.11.136.

    CAS  PubMed  Google Scholar 

  117. Karrison T, Kindler HL, Gandara DR, Lu C, Guterz TL, Nichols K, et al. Final analysis of a multi-center, double-blind, placebo-controlled, randomized phase II trial of gemcitabine/cisplatin (GC) plus bevacizumab (B) or placebo (P) in patients (pts) with malignant mesothelioma (MM). J Clin Oncol. 2007;25(18):5. (Suppl 18S Abstract 7526):391s.

    Google Scholar 

  118. Jänne PA, Taffaro ML, Salgia R, Johnson BE. Inhibition of epidermal growth factor receptor signaling in malignant pleural mesothelioma. Cancer Res. 2002;62(18):5242–7.

    PubMed  Google Scholar 

  119. Govindan R, Kratzke RA, Herndon JE, Niehans GA, Vollmer R, Watson D, et al. Gefitinib in patients with malignant mesothelioma: a phase II study by the cancer and leukemia group B. Clin Cancer Res. 2005;11(6):2300–4. doi:10.1158/1078-0432.ccr-04-1940.

    CAS  PubMed  Google Scholar 

  120. Jackman DM, Kindler HL, Yeap BY, Fidias P, Salgia R, Lucca J, et al. Erlotinib plus bevacizumab in previously treated patients with malignant pleural mesothelioma. Cancer. 2008;113(4):808–14. doi:10.1002/cncr.23617.

    CAS  PubMed  Google Scholar 

  121. Rvd M, Robinson B, Nelson D. Gene therapy for malignant mesothelioma: beyond the infant years. Cancer Gene Ther. 2006;13(10):897–904.

    Google Scholar 

  122. Lindsay Y, McCoull D, Davidson L, Leslie NR, Fairservice A, Gray A, et al. Localization of agonist-sensitive PtdIns(3,4,5)P3 reveals a nuclear pool that is insensitive to PTEN expression. J Cell Sci. 2006;119(24):5160–8. doi:10.1242/jcs.000133.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Mark Pershouse, PhD, associate professor of the Department of Biomedical and Pharmaceutical Science at the University of Montana, USA, for his teachings, lessons, and mentoring Pablo Henrique Oliveira e Silva for revising this manuscript; Izabella Imperatriz Moreira Dalboni de Souza for creating and editing the figures present in this paper; CAPES for granting a 1-year scholarship to the first author of this paper at the University of Montana, USA; and CNPQ and Fundação de Amparo à Pesquisa do estado de Minas Gerais (FAPEMIG) for the financial support given to our Laboratory at the Federal University of Ouro Preto.

Conflict of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro César Isoldi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Assis, L.V.M., Isoldi, M.C. The function, mechanisms, and role of the genes PTEN and TP53 and the effects of asbestos in the development of malignant mesothelioma: a review focused on the genes' molecular mechanisms. Tumor Biol. 35, 889–901 (2014). https://doi.org/10.1007/s13277-013-1210-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-1210-4

Keywords

Navigation