Skip to main content
Log in

Inhibition of autophagy induced by TSA sensitizes colon cancer cell to radiation

  • Research Article
  • Published:
Tumor Biology

Abstract

Radiotherapy is one of the main treatments for clinical cancer therapy. However, its application was limited due to lack of radiosensitivity in some cancers. Trichostatin A (TSA) is a classic histone deacetylases inhibitor (HDACi) that specifically inhibits the biochemical functions of HDAC and is demonstrated to be an active anticancer drug. However, whether it could sensitize colon cancer to radiation is not clear. Our results showed that TSA enhanced the radiosensitivity of colon cancer cells as determined by CCK-8 and clonogenic survival assay. Moreover, apoptotic cell death induced by radiation was enhanced by TSA treatment. Additionally, TSA also induced autophagic response in colon cancer cells, while autophagy inhibition led to cell apoptosis and enhanced the radiosensitivity of colon cancer cells. Our data suggested that inhibition of cytoprotective autophagy sensitizes cancer cell to radiation, which might be further investigated for clinical cancer radiotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liu S et al. Randomized, controlled phase II study of post-surgery radiotherapy combined with recombinant adenoviral human p53 gene therapy in treatment of oral cancer. Canc Gene Ther. 2013;20(6):375–8.

    Article  CAS  Google Scholar 

  2. Lövey J et al. Radiosensitivity of human prostate cancer cells can be modulated by inhibition of 12-lipoxygenase. Cancer Lett. 2013;335(2):495–501.

    Article  PubMed  Google Scholar 

  3. Benzina S et al. High-LET radiation combined with oxaliplatin induce autophagy in U-87 glioblastoma cells. Cancer Lett. 2008;264(1):63–70.

    Article  CAS  PubMed  Google Scholar 

  4. Weichert W et al. Class I histone deacetylase expression has independent prognostic impact in human colorectal cancer: specific role of class I histone deacetylases in vitro and in vivo. Clin Cancer Res. 2008;14(6):1669–77.

    Article  CAS  PubMed  Google Scholar 

  5. Weichert W et al. Association of patterns of class I histone deacetylase expression with patient prognosis in gastric cancer: a retrospective analysis. Lancet Oncol. 2008;9(2):139–48.

    Article  CAS  PubMed  Google Scholar 

  6. Weichert W. HDAC expression and clinical prognosis in human malignancies. Cancer Lett. 2009;280(2):168–76.

    Article  CAS  PubMed  Google Scholar 

  7. Johnstone RW. Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat Rev Drug Discov. 2002;1(4):287–99.

    Article  CAS  PubMed  Google Scholar 

  8. Bolden JE, Peart MJ, Johnstone RW. Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov. 2006;5(9):769–84.

    Article  CAS  PubMed  Google Scholar 

  9. Carafa V, Nebbioso A, Altucci L. Histone deacetylase inhibitors: recent insights from basic to clinical knowledge & patenting of anti-cancer actions. Recent Pat Anticancer Drug Discov. 2011;6(1):131–45.

    Article  CAS  PubMed  Google Scholar 

  10. Mottet D, Castronovo V. Histone deacetylases: anti-angiogenic targets in cancer therapy. Curr Cancer Drug Targets. 2010;10(8):898–913.

    Article  CAS  PubMed  Google Scholar 

  11. Bots M, Johnstone RW. Rational combinations using HDAC inhibitors. Clin Cancer Res. 2009;15(12):3970–7.

    Article  CAS  PubMed  Google Scholar 

  12. Gore SD et al. Combined DNA methyltransferase and histone deacetylase inhibition in the treatment of myeloid neoplasms. Cancer Res. 2006;66(12):6361–9.

    Article  CAS  PubMed  Google Scholar 

  13. Caron C, Boyault C, Khochbin S. Regulatory cross-talk between lysine acetylation and ubiquitination: role in the control of protein stability. Bioessays. 2005;27(4):408–15.

    Article  CAS  PubMed  Google Scholar 

  14. Fantin VR et al. Constitutive activation of signal transducers and activators of transcription predicts vorinostat resistance in cutaneous T-cell lymphoma. Cancer Res. 2008;68(10):3785–94.

    Article  CAS  PubMed  Google Scholar 

  15. Oh M, Choi IK, Kwon HJ. Inhibition of histone deacetylase1 induces autophagy. Biochem Biophys Res Commun. 2008;369(4):1179–83.

    Article  CAS  PubMed  Google Scholar 

  16. Gammoh N et al. Role of autophagy in histone deacetylase inhibitor-induced apoptotic and nonapoptotic cell death. Proc Natl Acad Sci U S A. 2012;109(17):6561–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Cao Y, Klionsky DJ. Physiological functions of Atg6/Beclin 1: a unique autophagy-related protein. Cell Res. 2007;17(10):839–49.

    Article  CAS  PubMed  Google Scholar 

  18. Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis. 2010;31(1):27–36.

    Article  CAS  PubMed  Google Scholar 

  19. Berdasco M, Esteller M. Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev Cell. 2010;19(5):698–711.

    Article  CAS  PubMed  Google Scholar 

  20. Esteller M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet. 2007;8(4):286–98.

    Article  CAS  PubMed  Google Scholar 

  21. Liu Y, He G, Wang Y, Guan X, Pang X, Zhang B. MCM-2 is a therapeutic target of Trichostatin A in colon cancer cells. Toxicol Lett. 2013;221(1):23–30.

    Article  CAS  PubMed  Google Scholar 

  22. Rhodes LV et al. The histone deacetylase inhibitor trichostatin A alters microRNA expression profiles in apoptosis-resistant breast cancer cells. Oncol Rep. 2012;27(1):10–6.

    CAS  PubMed  Google Scholar 

  23. Frew AJ et al. Combination therapy of established cancer using a histone deacetylase inhibitor and a TRAIL receptor agonist. Proc Natl Acad Sci U S A. 2008;105(32):11317–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Camphausen K, Tofilon PJ. Inhibition of histone deacetylation: a strategy for tumor radiosensitization. J Clin Oncol. 2007;26:4051–6.

    Article  Google Scholar 

  25. Folkvord S et al. Radiosensitization by SAHA in experimental colorectal carcinoma models—in vivo effects and relevance of histone acetylation status. Int J Radiat Oncol Biol Phys. 2009;74(2):546–52.

    Article  CAS  PubMed  Google Scholar 

  26. Ree AH et al. Vorinostat, a histone deacetylase inhibitor, combined with pelvic palliative radiotherapy for gastrointestinal carcinoma: the Pelvic radiation and Vorinostat (PRAVO) phase 1 study. Lancet Oncol. 2010;11(5):459–64.

    Article  CAS  PubMed  Google Scholar 

  27. Chowdhury S et al. Histone deacetylase inhibitor belinostat represses survivin expression through reactivation of transforming growth factor beta (TGFbeta) receptor II leading to cancer cell death. J Biol Chem. 2011;286(35):30937–48.

    Article  CAS  PubMed  Google Scholar 

  28. Kondo Y et al. The role of autophagy in cancer development and response to therapy. Nat Rev Cancer. 2005;5(9):726–34.

    Article  CAS  PubMed  Google Scholar 

  29. Livesey KM et al. Autophagy inhibition in combination cancer treatment. Curr Opin Investig Drugs. 2009;10(12):1269–79.

    CAS  PubMed  Google Scholar 

  30. Sy LK et al. Timosaponin A-III induces autophagy preceding mitochondria-mediated apoptosis in HeLa cancer cells. Cancer Res. 2008;68(24):10229–37.

    Article  CAS  PubMed  Google Scholar 

  31. Akar U et al. Silencing of Bcl-2 expression by small interfering RNA induces autophagic cell death in MCF-7 breast cancer cells. Autophagy. 2008;4(5):669–79.

    CAS  PubMed  Google Scholar 

  32. Funderburk SF, Wang QJ, Yue Z. The Beclin 1–VPS34 complex—at the crossroads of autophagy and beyond. Trends Cell Biol. 2010;20(6):355–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Dai ZJ et al. Antitumor effects of rapamycin in pancreatic cancer cells by inducing apoptosis and autophagy. Int J Mol Sci. 2013;14(1):273–85.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (no. 81272497).

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xueli Pang or Bo Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 657 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, G., Wang, Y., Pang, X. et al. Inhibition of autophagy induced by TSA sensitizes colon cancer cell to radiation. Tumor Biol. 35, 1003–1011 (2014). https://doi.org/10.1007/s13277-013-1134-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-1134-z

Keywords

Navigation