Skip to main content

Advertisement

Log in

Ubiquitin-specific protease 22: a novel molecular biomarker in cervical cancer prognosis and therapeutics

  • Research Article
  • Published:
Tumor Biology

Abstract

Ubiquitin-specific protease 22 (USP22) exhibits an important function in tumor progression and oncogenesis. The aim of this study was to investigate the role of USP22 and the association with its potential targets in patients with cervical cancer. To our knowledge, this is the first study that determines the relationship between USP22 expression and clinicopathological significance in cervical cancer. The immunohistochemistry results showed that USP22 protein was overexpressed in cervical cancer samples compared with normal cervical tissues (P < 0.001). Moreover, clinicopathological analysis showed that USP22 expression was highly related to International Federation of Gynecology and Obstetrics stage, Ki67, lymph node metastasis, and histology grade. The results of Kaplan–Meier analysis indicated that patients with high USP22 expression had significantly shorter overall survival (OS) and disease-free survival (DFS) than patients with low expression of USP22 (P < 0.001). Multivariate Cox regression analysis revealed that USP22 expression status was an independent prognostic marker for both OS and DFS of patients with cervical cancer. It is suggested that USP22 overexpression may be associated with poor prognosis in cervical cancer. It may represent a novel prognostic biomarker or a target for improving the treatment efficiency of patients with cervical cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Jones SB. Cancer in the developing world: a call to action. BMJ. 1999;319:505–8.

    Article  CAS  PubMed  Google Scholar 

  2. Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74–108.

    Article  PubMed  Google Scholar 

  3. Siegel R, Naishadham D, Jemal A. Cancer statistics. CA Cancer J Clin. 2013;63:11–30.

    Article  PubMed  Google Scholar 

  4. Siegel R, Ward E, Brawley O, Jemal A. Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin. 2011;61:212–36.

    Article  PubMed  Google Scholar 

  5. Munoz N, Bosch FX, de Sanjose S, et al. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med. 2003;348:518–27.

    Article  PubMed  Google Scholar 

  6. Syrjanen K, Kataja V, Yliskoski M, Chang F, Syrjanen S, Saarikoski S. Natural history of cervical human papillomavirus lesions does not substantiate the biologic relevance of the Bethesda System. Obstet Gynecol. 1992;79:675–82.

    CAS  PubMed  Google Scholar 

  7. Castellsague X. Natural history and epidemiology of HPV infection and cervical cancer. Gynecol Oncol. 2008;110(3suppl2):S4–7.

    Article  PubMed  Google Scholar 

  8. Saslow D, Castle PE, Cox JT, et al. American Cancer Society Guideline for human papillomavirus (HPV) vaccine use to prevent cervical cancer and its precursors. CA Cancer J Clin. 2007;57:7–28.

    Article  PubMed  Google Scholar 

  9. Hoeller D, Dikic I. Targeting the ubiquitin system in cancer therapy. Nature. 2009;458:438–44.

    Article  CAS  PubMed  Google Scholar 

  10. Lee HJ, Kim MS, Shin JM, Park TJ, Chung HM, et al. The expression patterns of deubiquitinating enzymes, USP22 and Usp22. Gene Expr Patterns. 2006;6:277–84.

    Article  CAS  PubMed  Google Scholar 

  11. Glinsky GV. Genomic models of metastatic cancer: functional analysis of death-from-cancer signature genes reveals aneuploid, anoikis-resistant, metastasis-enabling phenotype with altered cell cycle control and activated Polycomb Group (PcG) protein chromatin silencing pathway. Cell Cycle. 2006;5:1208–16.

    Article  CAS  PubMed  Google Scholar 

  12. Zhao Y, Lang G, Ito S, et al. A TFTC/STAGA module mediates histone H2A and H2B deubiquitination, coactivates nuclear receptors, and counteracts heterochromatin silencing. Mol Cell. 2008;29:92–101.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang XY, Varthi M, Sykes SM, et al. The putative cancer stem cell marker USP22 is a subunit of the human SAGA complex required for activated transcription and cell-cycle progression. Mol Cell. 2008;29:102–11.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Zhang XY, Pfeiffer HK, Thorne AW, et al. USP22, an hSAGA subunit and potential cancer stem cell marker, reverses the polycomb-catalyzed ubiquitylation of histone H2A. Cell Cycle. 2008;7:1522–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Bouchard C, Dittrich O, Kiermaier A, et al. Regulation of cyclin D2 gene expression by the Myc/Max/Mad network: Myc-dependent TRRAP recruitment and histone acetylation at the cyclin D2 promoter. Genes Dev. 2001;15:2042–7.

    Article  CAS  PubMed  Google Scholar 

  16. Feinberg AP, Tycko B. The history of cancer epigenetics. Nat Rev Cancer. 2004;4:143–53.

    Article  CAS  PubMed  Google Scholar 

  17. Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007;128:683–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Glinsky GV. “Stemness” genomics law governs clinical behavior of human cancer: implications for decision making in disease management. J Clin Oncol. 2008;26:2846–53.

    Article  PubMed  Google Scholar 

  19. Liu YL, Yang YM, Xu H, et al. Aberrant expression of USP22 is associated with liver metastasis and poor prognosis of colorectal cancer. J Surg Oncol. 2011;103:283–9.

    Article  CAS  PubMed  Google Scholar 

  20. Liu YL, Yang YM, Xu H, et al. Increased expression of ubiquitin-specific protease 22 can promote cancer progression and predict therapy failure in human colorectal cancer. J Gastroenterol Hepatol. 2010;25:1800–5.

    Article  PubMed  Google Scholar 

  21. Zhang Y, Yao L, Zhang X, et al. Elevated expression of USP22 in correlation with poor prognosis in patients with invasive breast cancer. J Cancer Res Clin Oncol. 2011;137:1245–53.

    Article  CAS  PubMed  Google Scholar 

  22. Lv L, Xiao XY, Gu ZH, et al. Silencing USP22 by asymmetric structure of interfering RNA inhibits proliferation and induces cell cycle arrest in bladder cancer cells. Mol Cell Biochem. 2011;346:11–21.

    Article  CAS  PubMed  Google Scholar 

  23. Pijnappel WW, Timmers HT. Dubbing SAGA unveils new epigenetic crosstalk. Mol Cell. 2008;29:152–4.

    Article  CAS  PubMed  Google Scholar 

  24. Atanassov BS, Dent SY. USP22 regulates cell proliferation by deubiquitinating the transcriptional regulator FBP1. EMBO Rep. 2011;12:924–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Chipumuro E, Henriksen MA. The ubiquitin hydrolase USP22 contributes to 3′-end processing of JAK-STAT-inducible genes. FASEB J. 2012;26:842–54.

    Article  CAS  PubMed  Google Scholar 

  26. Liu YL, Jiang SX, Yang YM, et al. USP22 acts as an oncogene by the activation of BMI-1-mediated INK4a/ARF pathway and Akt pathway. Cell Biochem Biophys. 2011;62:229–35.

    Article  Google Scholar 

  27. Song H, Li C, Li R, Geng J. Prognostic significance of AEG-1 expression in colorectal carcinoma. Int J Colorectal Dis. 2010;25:1201–9.

    Article  PubMed  Google Scholar 

  28. Wu J, Zhou J, Yao L, Lang Y, Liang Y, Chen L, et al. High expression of M3 muscarinic acetylcholine receptor is a novel biomarker of poor prognostic in patients with non-small cell lung cancer. Tumor Biol. 2013. doi:10.1007/s13277-013-0982-x.

    Google Scholar 

  29. Li C, Li Y, Wang X, Wang Z, Cai J, et al. Elevated expression of astrocyte elevated gene-1 (AEG-1) is correlated with cisplatin-based chemoresistance and shortened outcome in patients with stages III–IV serous ovarian carcinoma. Histopathology. 2012;60:953–63.

    Article  PubMed  Google Scholar 

  30. Liang M, Li J, Wang D, Li S, Sun Y, Sun T, et al. T-cell infiltration and expressions of T lymphocyte co-inhibitory B7-H1 and B7-H4 molecules among colorectal cancer patients in northeast China’s Heilongjiang province. Tumor Biol. 2013. doi:10.1007/s13277-013-1006-6.

    Google Scholar 

  31. Li C, Cai J, Geng J, Li Y, Wang Z, Li R. Purification, characterization and anticancer activity of a polysaccharide from Panax ginseng. Int J Biol Macromol. 2012;51:968–73.

    Article  CAS  PubMed  Google Scholar 

  32. Cai J, Wu Y, Li C, Feng M, Shi Q, Li R, et al. Panax ginseng polysaccharide suppresses metastasis via modulating Twist expression in gastric cancer. Int J Biol Macromol. 2013;57:22–5.

    Article  CAS  PubMed  Google Scholar 

  33. Xin T, Zhang F, Jiang Q, Chen C, Huang D, et al. The inhibitory effect of a polysaccharide from Codonopsis pilosula on tumor growth and metastasis in vitro. Int J Biol Macromol. 2012;51:788–93.

    Article  CAS  PubMed  Google Scholar 

  34. Xin T, Zhang F, Jiang Q, Chen C, Huang D, et al. Extraction, purification and antitumor activity of a water-soluble polysaccharide from the roots of Polygala tenuifolia. Carbohydr Polym. 2012;90:1127–31.

    Article  CAS  PubMed  Google Scholar 

  35. Xin T, Zhang F, Jiang Q, Chen C, Huang D, et al. Purification and antitumor activity of two acidic polysaccharides from the roots of Polygala tenuifolia. Carbohydr Polym. 2012;90:1671–6.

    Article  CAS  PubMed  Google Scholar 

  36. Lin M, Xia B, Yang M, Gao S, Huo Y, Lou G. Characterization and antitumor activities of a polysaccharide from the rhizoma of Menispermum dauricum. Int J Biol Macromol. 2013;53:72–6.

    Article  CAS  PubMed  Google Scholar 

  37. Lin M, Xia B, Yang M, Gao S, Huo Y, Lou G. Anti-ovarian cancer potential of two acidic polysaccharides from the rhizoma of Menispermum dauricum. Carbohydr Polym. 2013;92:2212–7.

    Article  CAS  PubMed  Google Scholar 

  38. Kripke ML. Reducing death from cancer: what will it take? Tumor Biol. 2012;33:1275–8.

    Article  Google Scholar 

  39. Zhu W, Pan X, Li F, Zhang Y, Lu X. Expression of Beclin 1 and LC3 in FIGO stage I–II cervical squamous cell carcinoma and relationship to survival. Tumor Biol. 2012;33:1653–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank all the people and patients who had participated in this study. This work is supported by the National Natural Science Foundation of China (No.: 81172453).

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ge Lou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, M., Liu, YD., Wang, YY. et al. Ubiquitin-specific protease 22: a novel molecular biomarker in cervical cancer prognosis and therapeutics. Tumor Biol. 35, 929–934 (2014). https://doi.org/10.1007/s13277-013-1121-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-1121-4

Keywords

Navigation