Skip to main content

Advertisement

Log in

Effects of ellipticine on ALDH1A1-expressing breast cancer stem cells—an in vitro and in silico study

  • Research Article
  • Published:
Tumor Biology

Abstract

Targeting breast cancer stem cells (BCSCs) offers a promising strategy for breast cancer treatment. We examined the plant alkaloid ellipticine for its efficacy to inhibit the expression of aldehyde dehydrogenase 1 class A1 (ALDH1A1)-positive BCSCs by in vitro and in silico methods. At 3 mM concentration, ellipticine decreased the expression of ALDH1A1-positive BCSCs by 62 % (p = 0.073) in the MCF7 cell line and by 53 % (p = 0.024) in the SUM159 cell line compared to vehicle-treated cultures. Ellipticine significantly reduced the formation of mammospheres, whereas paclitaxel enhanced mammosphere formation in both the treated cell lines. Interestingly, when treated with a combination of ellipticine and paclitaxel, the percentage of ALDH1A1-positive BCSCs dropped by several fold in vitro. A homology model of Homo sapiens ALDH1A1 was built using the crystal structure of NAD-bound sheep liver class I aldehyde dehydrogenase [PDB ID: 1BXS] as a template. Molecular simulation and docking studies revealed that the amino acids Asn-117 and Asn-121, Glu-249, Cys-302, and Gln-350, present in the active site of human ALDH1A1, played a vital role in interacting with the drug. The present study suggests that ellipticine reduces the proliferation and self-renewal ability of ALDH1A1-positive BCSCs and can be used in combination with a cytotoxic drug like paclitaxel for potential targeting of BCSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. National Cancer Registry Programme. http://ncrpindia.org/PBCR_2006_2008/Chapter_2.pdf

  2. Liu S, Dontu G, Wicha MS. Mammary stem cells, self-renewal pathways, and carcinogenesis. Breast Cancer Res. 2005;7:86–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Korkaya H, Paulson A, Charafe-Jauffret E, Ginestier C, Brown M, Dutcher J, et al. Regulation of mammary stem/progenitor cells by PTEN/Akt/beta-catenin signaling. PLoS Biol. 2009;7:e1000121.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Dick JE. Breast cancer stem cells revealed. Proc Natl Acad Sci U S A. 2003;100:3547–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Al-Hajj M, Becker MW, Wicha M, Weissman I, Clarke MF. Therapeutic implications of cancer stem cells. Curr Opin Genet Dev. 2004;14:43–7.

    Article  CAS  PubMed  Google Scholar 

  6. Dontu G, Al-Hajj M, Abdallah WM, Clarke MF, Wicha MS. Stem cells in normal breast development and breast cancer. Cell Prolif. 2003;36 Suppl 1:59–72.

    Article  CAS  PubMed  Google Scholar 

  7. Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer. Nat Rev Cancer. 2003;3:895–902.

    Article  CAS  PubMed  Google Scholar 

  8. Smalley M, Ashworth A. Stem cells and breast cancer: a field in transit. Nat Rev Cancer. 2003;3:832–44.

    Article  CAS  PubMed  Google Scholar 

  9. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100:3983–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Croker AK, Goodale D, Chu J, Postenka C, Hedley BD, Hess DA, et al. High aldehyde dehydrogenase and expression of cancer stem cell markers selects for breast cancer cells with enhanced malignant and metastatic ability. J Cell Mol Med. 2009;13:2236–52.

    Article  PubMed  Google Scholar 

  11. Ucar D, Cogle CR, Zucali JR, Ostmark B, Scott EW, Zori R, et al. Aldehyde dehydrogenase activity as a functional marker for lung cancer. Chem Biol Interact. 2009;178:48–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Corti S, Locatelli F, Papadimitriou D, Donadoni C, Salani S, Del Bo R, et al. Identification of a primitive brain-derived neural stem cell population based on aldehyde dehydrogenase activity. Stem Cells. 2006;24:975–85.

    Article  CAS  PubMed  Google Scholar 

  13. Vasiliou V, Nebert DW. Analysis and update of the human aldehyde dehydrogenase (ALDH) gene family. Hum Genomics. 2005;2:138–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Armstrong L, Stojkovic M, Dimmick I, Ahmad S, Stojkovic P, Hole N, et al. Phenotypic characterization of murine primitive hematopoietic progenitor cells isolated on basis of aldehyde dehydrogenase activity. Stem Cells. 2004;22:1142–51.

    Article  PubMed  Google Scholar 

  15. Hess DA, Meyerrose TE, Wirthlin L, Craft TP, Herrbrich PE, Creer MH, et al. Functional characterization of highly purified human hematopoietic repopulating cells isolated according to aldehyde dehydrogenase activity. Blood. 2004;104:1648–55.

    Article  CAS  PubMed  Google Scholar 

  16. Hess DA, Wirthlin L, Craft TP, Herrbrich PE, Hohm SA, Lahey R, et al. Selection based on CD133 and high aldehyde dehydrogenase activity isolates long-term reconstituting human hematopoietic stem cells. Blood. 2006;107:2162–9.

    Article  CAS  PubMed  Google Scholar 

  17. Matsui W, Huff CA, Wang Q, Malehorn MT, Barber J, Tanhehco Y, et al. Characterization of clonogenic multiple myeloma cells. Blood. 2004;103:2332–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Goodwin S, Smith AF. Alkaloids of Ochrosia elliptica Labill. J Am Chem Soc. 1959;81:1903–8.

    Article  CAS  Google Scholar 

  19. Stiborova M. The anticancer drug ellipticine forms covalent DNA adducts, mediated by human cytochromes P450, through metabolism to 13-hydroxyellipticine and ellipticine N2-oxide. Cancer Res. 2004;64:8374–80.

    Article  CAS  PubMed  Google Scholar 

  20. Stiborova M, Rupertova M, Schmeiser HH, Frei E. Molecular mechanisms of antineoplastic action of an anticancer drug ellipticine. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2006;150:13–23.

    Article  CAS  PubMed  Google Scholar 

  21. Kuo PL, Hsu YL, Kuo YC, Chang CH, Lin CC. The anti-proliferative inhibition of ellipticine in human breast mda-mb-231 cancer cells is through cell cycle arrest and apoptosis induction. Anticancer Drugs. 2005;16:789–95.

    Article  CAS  PubMed  Google Scholar 

  22. Poljakova J, Eckschlager T, Hrabeta J, Hrebackova J, Smutny S, Frei E, et al. The mechanism of cytotoxicity and DNA adduct formation by the anticancer drug ellipticine in human neuroblastoma cells. Biochem Pharmacol. 2009;77:1466–79.

    Article  CAS  PubMed  Google Scholar 

  23. Martinkova E, Dontenwill M, Frei E, Stiborova M. Cytotoxicity of and DNA adduct formation by ellipticine in human U87MG glioblastoma cancer cells. Neuro Endocrinol Lett. 2009;30 Suppl 1:60–6.

    CAS  PubMed  Google Scholar 

  24. Auclair C. Multimodal action of antitumor agents on DNA: the ellipticine series. Arch Biochem Biophys. 1987;259:1–14.

    Article  CAS  PubMed  Google Scholar 

  25. Huang C, Zhang XM, Tavaluc RT, Hart LS, Dicker DT, Wang W, et al. The combination of 5-fluorouracil plus p53 pathway restoration is associated with depletion of p53-deficient or mutant p53-expressing putative colon cancer stem cells. Cancer Biol Ther. 2009;8:2186–93.

    Article  PubMed  Google Scholar 

  26. Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 2003;17:1253–70.

    Article  CAS  PubMed  Google Scholar 

  27. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1:555–67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.

    CAS  PubMed  Google Scholar 

  29. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Chenna R. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res. 2003;31:3497–500.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993;234:779–815.

    Article  CAS  PubMed  Google Scholar 

  32. Guex N, Peitsch MC. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 1997;18:2714–23.

    Article  CAS  PubMed  Google Scholar 

  33. Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr. 1993;26:283–91.

    Article  CAS  Google Scholar 

  34. Vriend G. WHAT IF: a molecular modeling and drug design program. J Mol Graph. 1990;8:52–6. 29.

    Article  CAS  PubMed  Google Scholar 

  35. Sippl MJ. Recognition of errors in three-dimensional structures of proteins. Proteins. 1993;17:355–62.

    Article  CAS  PubMed  Google Scholar 

  36. Lüthy R, Bowie JU, Eisenberg D. Assessment of protein models with three-dimensional profiles. Nature. 1992;356:83–5.

    Article  Google Scholar 

  37. Bowie JU, Lüthy R, Eisenberg D. A method to identify protein sequences that fold into a known three-dimensional structure. Science. 1991;253:164–70.

    Article  CAS  PubMed  Google Scholar 

  38. Laskowski RA, Chistyakov VV, Thornton JM. Pdbsum more: new summaries and analyses of the known 3D structures of proteins and nucleic acids. Nucleic Acids Res. 2005;33:D266–268.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Lindal E, Hess B. Gromacs 3.0: a package for molecular simulation and trajectory analysis. J Mol Model. 2001;7:306–17.

    Google Scholar 

  40. Berendsen H. Interaction models for water in relation to protein hydration. In: Pullman B, editor. Intermolecular forces. Dordrecht: Reidel; 1981. p. 331–42.

  41. DeLano WL. The PyMOL molecular graphics system. SanCarlos: DeLano Scientific. http://wwwpymolorg (2006).

  42. Fosse P, Rene B, Charra M, Paoletti C, Saucier JM. Stimulation of topoisomerase II-mediated DNA cleavage by ellipticine derivatives: structure–activity relationship. Mol Pharmacol. 1992;42:590–5.

    CAS  PubMed  Google Scholar 

  43. Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF, et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst. 2008;100:672–9.

    Article  CAS  PubMed  Google Scholar 

  44. Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell. 2007;131:1109–23.

    Article  CAS  PubMed  Google Scholar 

  45. Charafe-Jauffret E, Monville F, Ginestier C, Dontu G, Birnbaum D, Wicha MS. Cancer stem cells in breast: current opinion and future challenges. Pathobiology. 2008;75:75–84.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Ohashi M, Sugikawa E, Nakanishi N. Inhibition of p53 protein phosphorylation by 9-hydroxyellipticine: a possible anticancer mechanism. Jpn J Cancer Res. 1995;86:819–27.

    Article  CAS  PubMed  Google Scholar 

  47. Stiborova M, Bieler CA, Wiessler M, Frei E. The anticancer agent ellipticine on activation by cytochrome P450 forms covalent DNA adducts. Biochem Pharmacol. 2001;62:1675–84.

    Article  CAS  PubMed  Google Scholar 

  48. Poljakova J, Frei E, Gomez JE, Aimova D, Eckschlager T, Hrabeta J, et al. DNA adduct formation by the anticancer drug ellipticine in human leukemia HL-60 and CCRF-CEM cells. Cancer Lett. 2007;252:270–9.

    Article  CAS  PubMed  Google Scholar 

  49. Tian E, Landowski TH, Stephens OW, Yaccoby S, Barlogie B, Shaughnessy Jr JD. Ellipticine derivative NSC 338258 represents a potential new antineoplastic agent for the treatment of multiple myeloma. Mol Cancer Ther. 2008;7:500–9.

    Article  CAS  PubMed  Google Scholar 

  50. Fang K, Chen SP, Lin CW, Cheng WC, Huang HT. Ellipticine-induced apoptosis depends on Akt translocation and signaling in lung epithelial cancer cells. Lung Cancer. 2009;63:227–34.

    Article  PubMed  Google Scholar 

  51. Juret P, Couette JE, Delozier T, Le Talaer JY. [Hydroxy-9-methyl-2-ellipticinium (NSC 264-137) for osseous metastases from breast cancer. A 4 year experience (author’s transl)]. Bull Cancer. 1981;68:224–31.

    CAS  PubMed  Google Scholar 

  52. Peng Y, Li C, Chen L, Sebti S, Chen J. Rescue of mutant p53 transcription function by ellipticine. Oncogene. 2003;22:4478–87.

    Article  CAS  PubMed  Google Scholar 

  53. Wang X, Wu X, Wang C, Zhang W, Ouyang Y, Yu Y, He Z. Transcriptional suppression of breast cancer resistance protein (BCRP) by wild-type p53 through the NF-kappaB pathway in MCF-7 cells. FEBS Lett. 2010;584:3392–7.

    Google Scholar 

  54. Godar S, Ince TA, Bell GW, Feldser D, Donaher JL, Bergh J, et al. Growth-inhibitory and tumor-suppressive functions of p53 depend on its repression of CD44 expression. Cell. 2008;134:62–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Phillips TM, McBride WH, Pajonk F. The response of CD24(−/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst. 2006;98:1777–85.

    Article  PubMed  Google Scholar 

  56. Moreb JS, Baker HV, Chang L-J, Amaya M, Lopez MC, Ostmark B, et al. ALDH isozymes downregulation affects cell growth, cell motility and gene expression in lung cancer cells. Mol Cancer. 2008;7:87–87.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

At the Tumor Biology Laboratory, National Institute of Pathology, New Delhi, India, we wish to thank Dr. Sourav Verma and Ms. Anvesha Malik for their help in the flow cytometry experiments. We also thank the BD Biosciences Flow Cytometry Core Group for the excellent support in cell sorting. SLP and PSC want to thank the Indian Council of Medical Research, New Delhi, Government of India for the financial support and RSC gratefully acknowledges the University Grant Commission, New Delhi, India for his fellowship.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunita Saxena.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(JPEG 184 kb)

High resolution image (TIFF 21980 kb)

ESM 2

(DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandrangi, S.L., Chikati, R., Chauhan, P.S. et al. Effects of ellipticine on ALDH1A1-expressing breast cancer stem cells—an in vitro and in silico study. Tumor Biol. 35, 723–737 (2014). https://doi.org/10.1007/s13277-013-1099-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-1099-y

Keywords

Navigation