Skip to main content

Advertisement

Log in

Upregulation of miR-136 in human non-small cell lung cancer cells promotes Erk1/2 activation by targeting PPP2R2A

  • Research Article
  • Published:
Tumor Biology

Abstract

MicroRNAs (miRNAs) have been integrated into cancer development and progression, because they repress translation of target genes which can be tumor suppressors and oncogenes. A number of miRNAs have been found to be closely related to human non-small cell lung cancer (NSCLC). However, the roles of miR-136 in NSCLC are still largely unknown. Here, we show that miR-136 is significantly upregulated in human NSCLC primary tumors and cell lines compared to their nontumor counterparts. Suppression of miR-136 expression in NSCLC cell line A549 inhibited both anchorage-dependent and anchorage-independent proliferation. Further studies showed that suppression of miR-136 expression attenuated phosphorylation of extracellular-signal-regulated kinase 1/2 (Erk1/2). We found that serine/threonine protein phosphatase 2A 55 kDa regulatory subunit B α isoform (PPP2R2A, also known as B55α) was a direct target of miR-136, and suppression of miR-136 expression led to a robust increase in both mRNA and protein levels of PPP2R2A. We found that miR-136 promoted phosphorylation of Erk1/2 through inhibition of PPP2R2A expression, and forced overexpression of PPP2R2A abrogated promotion of Erk1/2 phosphorylation by miR-136. Moreover, forced overexpression of PPP2R2A abrogated the promoting effect of miR-136 on cell growth and led to a reduced growth rate of NSCLC cells. Our findings indicate that miR-136 promotes Erk1/2 phosphorylation through targeting PPP2R2A in NSCLC cells and suggest that it may serve as a therapeutic target in NSCLC therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60:277–300.

    Article  PubMed  Google Scholar 

  2. Verdecchia A, Francisci S, Brenner H, et al. Recent cancer survival in Europe: a 2000–02 period analysis of EUROCARE-4 data. Lancet Oncol. 2007;8:784–96.

    Article  PubMed  Google Scholar 

  3. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science. 2001;294:853–8.

    Article  CAS  PubMed  Google Scholar 

  4. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

    Article  CAS  PubMed  Google Scholar 

  5. Petrocca F, Visone R, Onelli MR, et al. E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell. 2008;13:272–86.

    Article  CAS  PubMed  Google Scholar 

  6. Ambros V. The functions of animal microRNAs. Nature. 2004;431:350–5.

    Article  CAS  PubMed  Google Scholar 

  7. Farh KK, Grimson A, Jan C, et al. The widespread impact of mammalian microRNAs on mRNA repression and evolution. Science. 2005;310:1817–21.

    Article  CAS  PubMed  Google Scholar 

  8. Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet. 2009;10:704–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6:857–66.

    Article  CAS  PubMed  Google Scholar 

  10. Yu J, Wang F, Yang GH, et al. Human microRNA clusters: genomic organization and expression profile in leukemia cell lines. Biochem Biophys Res Commun. 2006;349:59–68.

    Article  CAS  PubMed  Google Scholar 

  11. Liu SP, Fu RH, Yu HH, et al. MicroRNAs regulation modulated self-renewal and lineage differentiation of stem cells. Cell Transplant. 2009;18:1039–45.

    Article  PubMed  Google Scholar 

  12. Yang Y, Wu J, Guan H, et al. MiR-136 promotes apoptosis of glioma cells by targeting AEG-1 and Bcl-2. FEBS Lett. 2012;586:3608–12.

    Article  CAS  PubMed  Google Scholar 

  13. Lee DY, Jeyapalan Z, Fang L, et al. Expression of versican 3′-untranslated region modulates endogenous microRNA functions. PLoS One. 2010;5:e13599.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature. 2001;410:37–40.

    Article  CAS  PubMed  Google Scholar 

  15. Krishna M, Narang H. The complexity of mitogen-activated protein kinases (MAPKs) made simple. Cell Mol Life Sci. 2008;65:3525–44.

    Article  CAS  PubMed  Google Scholar 

  16. Pearson G, Robinson F, Beers Gibson T, et al. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev. 2001;22:153–83.

    CAS  PubMed  Google Scholar 

  17. Pages G, Milanini J, Richard DE, et al. Signaling angiogenesis via p42/p44 MAP kinase cascade. Ann N Y Acad Sci. 2000;902:187–200.

    Article  CAS  PubMed  Google Scholar 

  18. Joslin EJ, Opresko LK, Wells A, Wiley HS, Lauffenburger DA. EGF-receptor-mediated mammary epithelial cell migration is driven by sustained ERK signaling from autocrine stimulation. J Cell Sci. 2007;120:3688–99.

    Article  CAS  PubMed  Google Scholar 

  19. Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer. 2005;5:341–54.

    Article  CAS  PubMed  Google Scholar 

  20. Schubbert S, Shannon K, Bollag G. Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer. 2007;7:295–308.

    Article  CAS  PubMed  Google Scholar 

  21. Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417:949–54.

    Article  CAS  PubMed  Google Scholar 

  22. Marks JL, Gong Y, Chitale D, et al. Novel MEK1 mutation identified by mutational analysis of epidermal growth factor receptor signaling pathway genes in lung adenocarcinoma. Cancer Res. 2008;68:5524–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Sebolt-Leopold JS, Herrera R. Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer. 2004;4:937–47.

    Article  CAS  PubMed  Google Scholar 

  24. Sebolt-Leopold JS, Dudley DT, Herrera R, et al. Blockade of the MAP kinase pathway suppresses growth of colon tumors in vivo. Nat Med. 1999;5:810–6.

    Article  CAS  PubMed  Google Scholar 

  25. Solit DB, Garraway LA, Pratilas CA, et al. BRAF mutation predicts sensitivity to MEK inhibition. Nature. 2006;439:358–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Karube Y, Tanaka H, Osada H, et al. Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci. 2005;96:111–5.

    Article  CAS  PubMed  Google Scholar 

  27. Yanaihara N, Caplen N, Bowman E, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell. 2006;9:189–98.

    Article  CAS  PubMed  Google Scholar 

  28. Navarro A, Diaz T, Gallardo E, et al. Prognostic implications of miR-16 expression levels in resected non-small-cell lung cancer. J Surg Oncol. 2011;103:411–5.

    Article  CAS  PubMed  Google Scholar 

  29. Garofalo M, Quintavalle C, Di Leva G, et al. MicroRNA signatures of TRAIL resistance in human non-small cell lung cancer. Oncogene. 2008;27:3845–55.

    Article  CAS  PubMed  Google Scholar 

  30. Skrzypski M, Dziadziuszko R, Jassem J. MicroRNA in lung cancer diagnostics and treatment. Mutat Res. 2011;717:25–31.

    Article  CAS  PubMed  Google Scholar 

  31. Mao X, Boyd LK, Yanez-Munoz RJ, et al. Chromosome rearrangement associated inactivation of tumour suppressor genes in prostate cancer. Am J Cancer Res. 2011;1:604–17.

    PubMed Central  PubMed  Google Scholar 

  32. Jayadeva G, Kurimchak A, Garriga J, et al. B55alpha PP2A holoenzymes modulate the phosphorylation status of the retinoblastoma-related protein p107 and its activation. J Biol Chem. 2010;285:29863–73.

    Article  CAS  PubMed  Google Scholar 

  33. Alvarez-Fernandez M, Halim VA, Aprelia M, Laoukili J, Mohammed S, Medema RH. Protein phosphatase 2A (B55alpha) prevents premature activation of forkhead transcription factor FoxM1 by antagonizing cyclin A/cyclin-dependent kinase-mediated phosphorylation. J Biol Chem. 2011;286:33029–36.

    Article  CAS  PubMed  Google Scholar 

  34. Yan L, Guo S, Brault M, et al. The B55alpha-containing PP2A holoenzyme dephosphorylates FOXO1 in islet beta-cells under oxidative stress. Biochem J. 2012;444:239–47.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang W, Yang J, Liu Y, et al. PR55 alpha, a regulatory subunit of PP2A, specifically regulates PP2A-mediated beta-catenin dephosphorylation. J Biol Chem. 2009;284:22649–56.

    Article  CAS  PubMed  Google Scholar 

  36. Kuo YC, Huang KY, Yang CH, Yang YS, Lee WY, Chiang CW. Regulation of phosphorylation of Thr-308 of Akt, cell proliferation, and survival by the B55alpha regulatory subunit targeting of the protein phosphatase 2A holoenzyme to Akt. J Biol Chem. 2008;283:1882–92.

    Article  CAS  PubMed  Google Scholar 

  37. Strack S. Overexpression of the protein phosphatase 2A regulatory subunit Bgamma promotes neuronal differentiation by activating the MAP kinase (MAPK) cascade. J Biol Chem. 2002;277:41525–32.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (no. 91071909).

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaxiang Wang.

Additional information

Sining Shen and Han Yue contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. 1

Typical amplification plot of the U6 RNA in 37 pairs of NSCLC tissues and matched nontumor tissues obtained using quantitative RT-PCR assay. Equal amounts of RNA were used for all the samples (JPEG 24 kb)

High resolution image (TIFF 1544 kb)

Supplemental Fig. 2

Typical amplification plot of the U6 RNA in NSCLC cell lines A549, SPC-A1, NCI-H1650, NCI-H1299 and the normal bronchial epithelial cell line 16HBE obtained using quantitative RT-PCR assay. Equal amounts of RNA were used for all the samples (JPEG 21 kb)

High resolution image (TIFF 1338 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, S., Yue, H., Li, Y. et al. Upregulation of miR-136 in human non-small cell lung cancer cells promotes Erk1/2 activation by targeting PPP2R2A. Tumor Biol. 35, 631–640 (2014). https://doi.org/10.1007/s13277-013-1087-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-1087-2

Keywords

Navigation