Skip to main content
Log in

Alteration in apoptosis and cell cycle by celecoxib and/or fish oil in 7,12-dimethyl benzene (α) anthracene-induced mammary carcinogenesis

  • Research Article
  • Published:
Tumor Biology

Abstract

Cyclooxygenase (COX)-2 inhibition by nonsteroidal anti-inflammatory drugs is a useful approach for cancer prevention but has several side effects. A novel approach combining these chemopreventive agents at low doses with dietary elements has been suggested to augment their effects and reduce side effects. Dietary fats, particularly, n-3 polyunsaturated fatty acids (PUFA) also exert cancer chemopreventive effect mediated through COX-2 inhibition. Therefore, the present study was designed to investigate the effect of combined dosage of celecoxib and n-3 PUFA-rich fish oil in experimental mammary carcinogenesis. Female Wistar rats were distributed into control and DMBA-treated groups. The groups were further subdivided based on pretreatment with celecoxib and/or fish oil. The animals were maintained for 90 days before sacrifice. To analyze the role of redox signaling, the two mediators, reactive oxygen species and calcium, and their effects on c-myc expression were evaluated. The chemopreventive effect was assessed by measurement of cell proliferation, apoptosis, and p53 in isolated mammary epithelial cells. Increased redox signaling with enhanced c-myc, p53 expression, and augmented apoptotic and proliferative rate were observed in carcinogen-treated animals. Pretreatment of carcinogen-treated animals with celecoxib and/or fish oil altered redox signaling with reduced c-myc, p53 expression, apoptosis, and proliferation. However, a combination dosage of celecoxib and fish oil had a better chemopreventive effect. The results suggest that a combination of celecoxib and fish oil is more effective in the chemoprevention of experimental mammary carcinogenesis, and this effect can be attributed to the modification of redox signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gonenc A, Ozkan Y, Torun M, Simsek B. Plasma malondialdehyde (MDA) levels in breast and lung cancer patients. J Clin Pharm Ther. 2001;26:141–4.

    Article  PubMed  CAS  Google Scholar 

  2. Hida T, Yatabe Y, Achiwa H, Muramatsu H, Kozaki K, Nakamura S, et al. Increased expression of cyclooxygenase-2 occurs frequently in human lung cancers, specifically in adenocarcinomas. Cancer Res. 1998;58:3761–4.

    PubMed  CAS  Google Scholar 

  3. Lu S, Zhang X, Badawi AF, El-Sohemy A, Archer MC. Cyclooxygenase-2 inhibitor celecoxib inhibits promotion of mammary tumorigenesis in rats fed a high fat diet rich in n-6 polyunsaturated fatty acids. Cancer Lett. 2002;184:7–12.

    Article  PubMed  CAS  Google Scholar 

  4. Dempke W, Rie C, Grothey A, Schmoll HJ. Cyclooxygenese-2: A novel target for cancer chemotherapy? J Cancer Res Clin Oncol. 2001;127:411–7.

    Article  PubMed  CAS  Google Scholar 

  5. Harris RE, Alshafie GA, Abou-Issa H, Seibert K. Chemoprevention of breast cancer in rats by celecoxib cyclooxygenase 2 inhibitor. Cancer Res. 2000;60:2101–3.

    PubMed  CAS  Google Scholar 

  6. Sanders LM, Henderson CE, Hong MY, Barhoumi R, Burghardt RC, Wang N, et al. An increase in reactive oxygen species by dietary fish oil coupled with the attenuation of antioxidant defenses by dietary pectin enhances rat colonocytes apoptosis. J Nutr. 2004;134:3233–8.

    PubMed  CAS  Google Scholar 

  7. Fosslien E. Molecular pathology of cyclooxygenase-2 in neoplasia. Ann Clin Lab Sci. 2000;30:3–21.

    PubMed  CAS  Google Scholar 

  8. Nzeako UC, Guicciardi ME, Yoon JH, Bronk SF, Gores GJ. COX-2 inhibits Fas-mediated apoptosis in cholangiocarcinoma cells. Hepatology. 2002;35:552–9.

    Article  PubMed  CAS  Google Scholar 

  9. Leahy KM, Koki AT, Masferrer JL. Role of cyclooxygenases in angiogenesis. Curr Med Chem. 2000;7:1163–70.

    Article  PubMed  CAS  Google Scholar 

  10. Basu GD, Pathangey LB, Tinder TL, LaGioia M, Gendler SJ, Mukherjee P. Cyclooxygenase-2 inhibitor induces apoptosis in breast cancer cells in an in vivo model of spontaneous metastatic breast cancer. Mol Cancer Res. 2004;2:632–42.

    PubMed  CAS  Google Scholar 

  11. Tsujii M, DuBois RN. Alterations in cellular adhesion and apoptosis in epithelial cells overexpressing prostaglandin endoperoxide synthase 2. Cell. 1995;83:493–501.

    Article  PubMed  CAS  Google Scholar 

  12. Kawamori T, Rao CV, Seibert K, Reddy BS. Chemopreventive activity of celecoxib, a specific cyclooxygenase-2 inhibitor, against colon carcinogenesis. Cancer Res. 1998;58:409–12.

    PubMed  CAS  Google Scholar 

  13. Haupt S, Kleinstern J, Haupt Y, Rubinstein A. Celecoxib can induce cell death independently of cyclooxygenase-2, p53, Mdm2, c-Abl and reactive oxygen species. Anticancer Drugs. 2006;17(6):609–19.

    Article  PubMed  CAS  Google Scholar 

  14. Dutta N, Sarotra P, Gupta S, Aggarwal R, Agnihotri N. Mechanism of action of celecoxib on normal and acid-challenged gastric mucosa. Exp Toxicol Pathol. 2009;61:353–61.

    Article  PubMed  CAS  Google Scholar 

  15. Finckh A, Aronson MD. Cardiovascular risks of cyclooxygenase-2 inhibitors: where we stand now. Ann Int Med. 2005;142:212–4.

    Article  PubMed  Google Scholar 

  16. Gupta S, Agnihotri N, Kaur H, Kaur N, Sarotra P. Role of oxidative stress in lansoprazole-mediated gastric and hepatic protection in Wistar rats. Ind J Gastro. 2007;26:118–21.

    Google Scholar 

  17. Kobayashi N, Barnard RJ, Henning SM, Elashoff D, Reddy ST, Cohen P, et al. Effect of altering dietary ω-6/ω-3 fatty acid ratios on prostate cancer membrane composition, cyclooxygenase-2, and prostaglandin E2. Clin Cancer Res. 2006;12:4662–70.

    Article  PubMed  CAS  Google Scholar 

  18. Swamy MV, Cooma I, Patlolla JMR, Simi B, Reddy BS, Rao CV. Modulation of cyclooxygenase-2 activities by the combined action of celecoxib and decosahexaenoic acid: novel strategies for colon cancer prevention and treatment. Mol Cancer Ther. 2004;3:215–21.

    PubMed  CAS  Google Scholar 

  19. Manna S, Chakraborty T, Ghosh B, Chatterjee M, Panda A, Srivastava S, et al. Dietary fish oil associated with increased apoptosis and modulatory expression of Bax and Bcl-2 during 7,12- dimethylbenz(α)anthracene-induced mammary carcinogenesis in rats. Prosta Leukotrienes and Essential Fatty Acids. 2008;79:5–14.

    Article  CAS  Google Scholar 

  20. Mantzioris E, Cleland LG, Gibson RA, Neumann MA, Demassi M, James MJ. Biochemical effects of a diet containing foods enriched with n-3 fatty acids. Am J Clin Nut. 2000;72:42–8.

    CAS  Google Scholar 

  21. Serini S, Fasano E, Piccioni E, Monego G, Cittadini AR, Celleno L, et al. DHA induces apoptosis and differentiation in human melanoma cells in vitro: involvement of HuR-mediated COX-2 mRNA stabilization and β-catenin nuclear translocation. Carcinogenesis. 2012;33(1):164–73.

    Article  PubMed  CAS  Google Scholar 

  22. Lim K, Han C, Dai Y, Shen M, Wu T. Omega-3 polyunsaturated fatty acids inhibit hepatocellular carcinoma cell growth through blocking beta-catenin and cyclooxygenase-2. Mol Cancer Ther. 2009;8(11):3046–55.

    Article  PubMed  CAS  Google Scholar 

  23. Thiebaut AC, Chajes V, Gerber M, Boutron-Ruault MC, Joulin V, Lenoir G, et al. Dietary intakes of omega-6 and omega-3 polyunsaturated fatty acids and the risk of breast cancer. Int J Cancer. 2009;124:924–31.

    Article  PubMed  CAS  Google Scholar 

  24. Williams CM, Burdge G. Long-chain n-3 PUFA: plant v. marine sources. Proc Nutr Soc. 2006;65:42–50.

    Article  PubMed  CAS  Google Scholar 

  25. Manna S, Janarthan M, Ghosh B, Rana B, Rana A, Chatterjee M. Fish oil regulates cell proliferation, protect DNA damages and decrease HER-2/neu and c-Myc protein expression in rat mammary carcinogenesis. Clin Nutr. 2010;29:531–7.

    Article  PubMed  CAS  Google Scholar 

  26. Sarotra P, Sharma G, Kansal S, Negi AK, Aggarwal R, Sandhir R, et al. Chemopreventive effect of different ratios of fish oil and corn oil in experimental colon carcinogenesis. Lipids. 2010;45:785–98.

    Article  PubMed  CAS  Google Scholar 

  27. Reddy BS, Patlolla JM, Simi B, Wang SH, Rao CV. Prevention of colon cancer by low doses of celecoxib, a cyclooxygenase inhibitor, administered in diet rich in ω-3 polyunsaturated fatty acids. Cancer Res. 2005;65:8022–7.

    PubMed  CAS  Google Scholar 

  28. Kansal S, Negi AK, Kaur R, Sarotra P, Sharma G, Aggarwal R, et al. Evaluation of role of oxidative stress in chemopreventive action of fish oil and celecoxib in the initiation phase of 7,12-dimethyl benz(α)anthracene induced mammary carcinogenesis. Tumour Biol. 2011;32:167–77.

    Article  PubMed  CAS  Google Scholar 

  29. Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov. 2009;8:579–91.

    Article  PubMed  CAS  Google Scholar 

  30. Ramosa RR, Carrilloa LL, Rios-Perezb AD, Vizcaya-Ruízb AD, Cebrianb ME. Sodium arsenite induces ROS generation, DNA oxidative damage, HO-1 and c-Myc proteins, NF-B activation and cell proliferation in human breast cancer MCF-7 cells. Mutat Res. 2009;674:109–15.

    Article  Google Scholar 

  31. Gius D, Spitz DR. Redox signaling in cancer biology. Antioxid Redox Signal. 2006;8:1249–52.

    Article  PubMed  CAS  Google Scholar 

  32. Yan Y, Wei CL, Zhang WR, Cheng HP, Liu J. Cross-talk between calcium and reactive oxygen species signaling. Acta Pharmacol Sin. 2006;27(7):821–6.

    Article  PubMed  CAS  Google Scholar 

  33. Jacobson J, Duchen MR. Mitochondrial oxidative stress and cell death in astrocytes—requirement for stored Ca2+ and sustained opening of the permeability transition pore. J Cell Sci. 2002;115:1175–88.

    PubMed  CAS  Google Scholar 

  34. Berns EMJJ, Klijn JGM, Putten WLJV, Van Staveren IL, Portengen H, Foekens JA. c-myc amplification is a better prognostic factor than HER2/neu amplification in primary breast cancer. Cancer Res. 1992;52:1107–13.

    PubMed  CAS  Google Scholar 

  35. Evan GI, Wyllie A, Gilbert C, et al. Induction of apoptosis in fibroblasts by c-myc protein. Cell. 1992;69:119–28.

    Article  PubMed  CAS  Google Scholar 

  36. Jong JSD, Diest PJV, Baak JPA. Number of apoptotic cells as a prognostic marker in invasive breast cancer. Br J Cancer. 2000;82:368–73.

    Article  PubMed  Google Scholar 

  37. Zambet GP, Levine AJ. A comparison of the biological activities of wild-type and mutant p53. FASEB J. 1993;7:855–65.

    Google Scholar 

  38. Frazier MW, He X, Wang J, Gu Z, Cleveland JL, Zambetti GP. Activation of c-myc gene expression by tumor-derived p53 mutants requires a discrete C-terminal domain. Mol Cell Biol. 1998;18(7):3735–43.

    PubMed  CAS  Google Scholar 

  39. Kraehenbuhl JP. Dispersed mammary gland and epithelial cells. I. Isolation and separation procedure. J Cell Bio. 1977;72:390–405.

    Article  CAS  Google Scholar 

  40. Srivastava V, Rawall S, Vijayan VK, Khanna M. Influenza a virus induced apoptosis: inhibition of DNA laddering and caspase-3 activity by zinc supplementation in cultured HeLa cells. Indian J Med Res. 2009;129:579–86.

    PubMed  CAS  Google Scholar 

  41. Iannone F, De Bari C, Scioscia C, Patella V, Lapadula G. Increased Bcl-2/p53 ratio in human osteoarthritic cartilage: a possible role in regulation of chondrocyte metabolism. Ann Rheum Dis. 2005;64:217–21.

    Article  PubMed  CAS  Google Scholar 

  42. Panabières CA, Vendrell JP, Slijper M, et al. Full-length cytokeratin-19 is released by human tumor cells: a potential role in metastatic progression of breast cancer. Breast Cancer Res. 2009;11:R39.

    Article  Google Scholar 

  43. Ding SJ, Li Y, Tan YX, et al. From proteomic analysis to clinical significance: overexpression of cytokeratin 19 correlates with hepatocellular carcinoma metastasis. Mol Cell Proteomics. 2004;3:73–81.

    Article  PubMed  CAS  Google Scholar 

  44. Kitchin KT, Ahmad S. Oxidative stress as a possible mode of action for arsenic carcinogenesis. Toxicol Lett. 2003;137:3–13.

    Article  PubMed  CAS  Google Scholar 

  45. Szatrowski TP, Nathan CF. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res. 1991;51:794–8.

    PubMed  CAS  Google Scholar 

  46. Toyokuni S, Okamoto K, Yodoi J, Hiai H. Persistent oxidative stress in cancer. FEBS Lett. 1995;358:1–3.

    Article  PubMed  CAS  Google Scholar 

  47. Joseph P, Muchnok TK, Klishis ML, Roberts JR, Antonini JM, Whong WZ, et al. Cadmium-induced cell transformation and tumorigenesis are associated with transcriptional activation of c-fos, c-jun, and c-myc proto-oncogenes: role of cellular calcium and reactive oxygen species. Toxicol Sci. 2001;61:295–303.

    Article  PubMed  CAS  Google Scholar 

  48. Kumar B, Koul S, Khandrika L, Meacham RB, Koul HK. Oxidative stress is inherent in prostate cancer cells and is required for aggressive phenotype. Cancer Res. 2008;68:1777–85.

    Article  PubMed  CAS  Google Scholar 

  49. Davies KJ. The broad spectrum of responses to oxidants in proliferating cells: a new paradigm for oxidative stress. IUBMB Life. 1999;48:41–7.

    PubMed  CAS  Google Scholar 

  50. Yaming WE, Haijian YU, Xiyan ZHAO, Hai BAI. Effects of selenium dioxide on apoptosis, bcl-2 and p53 expression, intracellular reactive oxygen species and calcium level in three human lung cancer cell lines. Chin-Ger J Clin Oncol. 2004;3:141–6.

    Google Scholar 

  51. Abate C, Patel L, Rauscher FJ, Curran T. Redox regulation of fos and jun DNA-binding activity in vitro. Science. 1990;249:1157–61.

    Article  PubMed  CAS  Google Scholar 

  52. Borg A, Baldetorp B, Ferno M, Olsson H, Sigurdsson H. c-myc amplification is an independent prognostic factor in postmenopausal breast cancer. Int J Cancer. 1992;51:687–91.

    Article  PubMed  CAS  Google Scholar 

  53. Tong X, Yin L, Joshi S, Rosenberg DW, Giardina C. Cyclooxygenase-2 regulation in colon cancer cells. J Boil Chem. 2005;280:15503–9.

    Article  CAS  Google Scholar 

  54. Magneta KJ, Orra MS, Cleveland JL, Rodriguez-Galindo C, Yang H, Yang C, et al. Suppression of c-myc expression and c-Myc function in response to sustained DNA damage in MCF-7 breast tumor cells. Biochem Pharmacol. 2001;62:593–602.

    Article  Google Scholar 

  55. Vermeulen K, Bockstaele DRV, Berneman ZN. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif. 2003;36:131–49.

    Article  PubMed  CAS  Google Scholar 

  56. Jin S, Zhang QY, Kang XM, Wang JX, Zhao WH. Daidzein induces MCF-7 breast cancer cell apoptosis via the mitochondrial pathway. Ann Oncol. 2010;21:263–8.

    Article  PubMed  CAS  Google Scholar 

  57. Iggo R, Gatter K, Bartek J, Lane D, Harris AL. Increased expression of mutant forms of p53 oncogene in primary lung cancer. Lancet. 1990;335:675–9.

    Article  PubMed  CAS  Google Scholar 

  58. Hainaut P, Hollstein M. p53 and human cancer: the first ten thousand mutations. Adv Cancer Res. 2000;77:81–137.

    Article  PubMed  CAS  Google Scholar 

  59. Lim LY, Vidnovic N, Ellisen LW, Leong CO. Mutant p53 mediates survival of breast cancer cells. Br J Cancer. 2009;101:1606–12.

    Article  PubMed  CAS  Google Scholar 

  60. Wang X, Di Pasqua AJ, Govind S, McCracken E, Hong C, Mi L, et al. Selective depletion of mutant p53 by cancer chemopreventive isothiocyanates and their structure-activity relationships. J Med Chem. 2011;54:809–16.

    Article  PubMed  CAS  Google Scholar 

  61. Manna S, Chakraborty T, Damodaran S, Samanta K, Rana B, Chatterjee M. Protective role of fish oil (Maxepa) on early events of rat mammary carcinogenesis by modulation of DNA-protein crosslinks, cell proliferation and p53 expression. Cancer Cell International. 2007;7:6.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the University Grants Commission as Ms. Anjana Kumari Negi is the SRF-UGC. The authors thank Dr. B.N. Dutta, former Professor of Pathology and Dean of Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India, for his advice and expertise in immunohistochemical procedure. The authors would also like to acknowledge Mrs. Sandhya, senior technician, Central Instrumentation cell Department, PGIMER, Chandigarh, for doing flowcytometric estimations.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navneet Agnihotri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Negi, A.K., Kansal, S., Bhatnagar, A. et al. Alteration in apoptosis and cell cycle by celecoxib and/or fish oil in 7,12-dimethyl benzene (α) anthracene-induced mammary carcinogenesis. Tumor Biol. 34, 3753–3764 (2013). https://doi.org/10.1007/s13277-013-0959-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-0959-9

Keywords

Navigation