Skip to main content

Advertisement

Log in

Apoptin induces apoptosis in nude mice allograft model of human bladder cancer by altering multiple bladder tumor-associated gene expression profiles

  • Research Article
  • Published:
Tumor Biology

Abstract

Bladder cancer (BC) is one of the most common human malignancies that account for major death in the world. Apoptin that is derived from chicken anemia virus (CAV) has displayed tumor-specific cytotoxic activity in a variety of human carcinomas. However, the magical function of apoptin in bladder carcinoma cell lines has not been identified yet. In our study, we delivered apoptin into bladder-originating T24, EJ, and HCV29 cell lines by adenovirus system. The selective cytotoxic effect of apoptin was determined by cell viability assay, active caspase-3 measurement, and annexin V/PI double staining. Importantly, we have examined the differential expression patterns of tumor-associated genes including Ki67, C-erbB-2, Rb, and nm23 by flow cytometry and western blot in vitro. In an animal study, apoptin was infused into animal models by AAV system, and immunohistochemistry and quantitative real-time PCR (qRT-PCR) were employed to validate results in vivo. The results indicated that apoptin could selectively induce apoptosis in bladder tumorigenic cells coupled with tumor-specific nucleus accumulation in vitro. Interestingly, apoptin could downregulate expression levels of Ki67 and C-erbB-2 and upregulate the expression of Rb both in vitro and in vivo. Moreover, the animal models treated with AAV-apoptin have shown smaller tumor volumes and displayed better prognosis than controls. In conclusion, apoptin could selectively induce apoptosis in bladder tumor cells through altering expression profiles of tumor-associated genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Burger M, Catto J W F, Dalbagni G, Grossman H B, Herr H, Karakiewicz P, Kassouf W, Kiemeney L A, La Vecchia CShariat S. Epidemiology and risk factors of urothelial bladder cancer. European urology. 2012;

  2. Philips BJ, Coyle CH, Morrisroe SN, Chancellor M, BYoshimura N. Induction of apoptosis in human bladder cancer cells by green tea catechins. Biomed Res. 2009;30:207–15.

    Article  PubMed  CAS  Google Scholar 

  3. Malkowicz SB. Intravesical therapy for superficial bladder cancer. Semin Urol Oncol. 2000;18:280–8.

    PubMed  CAS  Google Scholar 

  4. Pan JG, Zhou X, Zeng G, WHan RF. Suppression of bladder cancer growth in mice by adeno-associated virus vector-mediated endostatin expression. Tumor Biology. 2011;32:301–10.

    Article  PubMed  CAS  Google Scholar 

  5. Brandau S, Suttmann H. Thirty years of BCG immunotherapy for non-muscle invasive bladder cancer: a success story with room for improvement. Biomed Pharmacother. 2007;61:299–305.

    Article  PubMed  CAS  Google Scholar 

  6. Matsumoto K, Kikuchi E, Horinaga M, Takeda T, Miyajima A, Nakagawa KOya M. Intravesical interleukin-15 gene therapy in an orthotopic bladder cancer model. Human Gene Therapy. 2011;22:1423–32.

    Article  PubMed  CAS  Google Scholar 

  7. Los M, Panigrahi S, Rashedi I, Mandal S, Stetefeld J, Essmann FSchulze-Osthoff K. Apoptin, a tumor-selective killer. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2009;1793:1335–42.

    Article  CAS  Google Scholar 

  8. Rohn JNoteborn M. The viral death effector apoptin reveals tumor-specific processes. Apoptosis. 2004;9:315–22.

    Article  Google Scholar 

  9. Zhou S, Zhang M, Zhang J, Shen H, Tangsakar EWang J. Mechanisms of apoptin-induced cell death. Medical Oncology. 2011;1–7

  10. Pietersen ANoteborn M H M. Apoptin®. Cancer Gene Therapy. 2002;153–161

  11. Poon I, Oro C, Dias M, Zhang J, PJans D. A tumor cell-specific nuclear targeting signal within chicken anemia virus VP3/apoptin. J Virol. 2005;79:1339–41.

    Article  PubMed  CAS  Google Scholar 

  12. Danen-Van Oorschot A, Fischer D, Grimbergen JM, Klein B, Zhuang SM, Falkenburg J, et al. Apoptin induces apoptosis in human transformed and malignant cells but not in normal cells. Proc Natl Acad Sci. 1997;94:5843–7.

    Article  PubMed  CAS  Google Scholar 

  13. Zhuang SM, Shvarts A, van Ormondt H, Jochemsen AG, van der Eb A, JNoteborn MHM. Apoptin, a protein derived from chicken anemia virus, induces p53-independent apoptosis in human osteosarcoma cells. Cancer Res. 1995;55:486–9.

    PubMed  CAS  Google Scholar 

  14. Danen-van Oorschot A, van Der Eb ANoteborn M. The chicken anemia virus-derived protein apoptin requires activation of caspases for induction of apoptosis in human tumor cells. J Virol. 2000;74:7072–8.

    Article  PubMed  CAS  Google Scholar 

  15. Danen-Van Oorschot AA, van der Eb AJ, Noteborn MH. BCL-2 stimulates apoptin-induced apoptosis. Adv Exp Med Biol. 1999;457:245–9.

    Article  PubMed  CAS  Google Scholar 

  16. Danen-Van Oorschot AA, Zhang Y, Erkeland SJ, Fischer DF, van der Eb AJ, Noteborn MH. The effect of Bcl-2 on Apoptin in ‘normal’ vs. transformed human cells. Leukemia. 1999;13(1):S75–7.

    PubMed  Google Scholar 

  17. Takahashi R, Hashimoto T, Xu HJ, Hu SX, Matsui T, Miki T, et al. The retinoblastoma gene functions as a growth and tumor suppressor in human bladder carcinoma cells. Proc Natl Acad Sci. 1991;88:5257.

    Article  PubMed  CAS  Google Scholar 

  18. Enache M, SIMIONESCU CLASCU LC. Ki67 and Bcl-2 immunoexpression in primitive urothelial bladder carcinoma. Romanian journal of morphology and embryology. Revue Roumaine de Morphologie et Embryologie. 2012;53:521.

    PubMed  CAS  Google Scholar 

  19. Fleischmann A, Rotzer D, Seiler R, Studer U, EThalmann GN. Her2 amplification is significantly more frequent in lymph node metastases from urothelial bladder cancer than in the primary tumours. Eur Urol. 2011;60:350–7.

    Article  PubMed  CAS  Google Scholar 

  20. Krause FS, Feil G, Bichler KH. Immunohistochemical examinations (Ki67, p53, nm23) and DNA cytophotometry in bladder cancer. Anticancer Res. 2000;20:5023–8.

    PubMed  CAS  Google Scholar 

  21. Desilet N, Campbell TN, Choy FY. p53-based anti-cancer therapies: an empty promise? Curr Issues Mol Biol. 2010;12:143–6.

    PubMed  CAS  Google Scholar 

  22. Burdelya LG, Komarova EA, Hill JE, Browder T, Tararova ND, Mavrakis L, et al. Inhibition of p53 response in tumor stroma improves efficacy of anticancer treatment by increasing antiangiogenic effects of chemotherapy and radiotherapy in mice. Cancer Res. 2006;66:9356–61.

    Article  PubMed  CAS  Google Scholar 

  23. Noteborn M. Apoptin®-induced apoptosis: a review. Apoptosis. 1999;4:317–9.

    Article  PubMed  CAS  Google Scholar 

  24. Lara PC, Rey A, Santana C, Afonso JL, Diaz JM, González GApolinario R. The role of Ki67 proliferation assessment in predicting local control in bladder cancer patients treated by radical radiation therapy. Radiother Oncol. 1998;49:163–7.

    Article  PubMed  CAS  Google Scholar 

  25. Teodoro JG, Heilman DW, Parker A, EGreen MR. The viral protein apoptin associates with the anaphase-promoting complex to induce G2/M arrest and apoptosis in the absence of p53. Genes Dev. 2004;18:1952–7.

    Article  PubMed  CAS  Google Scholar 

  26. Grossman HB, Liebert M, Antelo M, Dinney C, Hu SX, Palmer J, et al. p53 and RB expression predict progression in T1 bladder cancer. Clin Cancer Res. 1998;4:829–34.

    PubMed  CAS  Google Scholar 

  27. Koga F, Yoshida S, Tatokoro M, Kawakami S, Fujii Y, Kumagai J, et al. ErbB2 and NFκB overexpression as predictors of chemoradiation resistance and putative targets to overcome resistance in muscle-invasive bladder cancer. PLoS One. 2011;6:e27616.

    Article  PubMed  CAS  Google Scholar 

  28. Wright C, Mellon K, Neal D, Johnston P, Corbett I, Horne C. Expression of c-erbB-2 protein product in bladder cancer. Br J Cancer. 1990;62:764.

    Article  PubMed  CAS  Google Scholar 

  29. Marín ÁP, Arranz EE, Sánchez AR, Auñón PZ, Barón MG. Role of anti-Her-2 therapy in bladder carcinoma. J Cancer Res Clin Oncol. 2010;136:1915–20.

    Article  PubMed  Google Scholar 

  30. Chow NH, Liu HS, Chan SH. The role of nm23-H1 in the progression of transitional cell bladder cancer. Clin Cancer Res. 2000;6:3595–9.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by grants from the National Natural Science Foundation of China (No. 81260374). We give sincere thanks to Mr. Shi Huaisheng for his efforts in making all the photos in this paper.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiansong Wang.

Additional information

Chunhui Wang and Wenju Wang. These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Wang, W., Wang, J. et al. Apoptin induces apoptosis in nude mice allograft model of human bladder cancer by altering multiple bladder tumor-associated gene expression profiles. Tumor Biol. 34, 1667–1678 (2013). https://doi.org/10.1007/s13277-013-0700-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-0700-8

Keywords

Navigation