Skip to main content

Advertisement

Log in

Expression of the coxsackie and adenovirus receptor in human lung cancers

  • Research Article
  • Published:
Tumor Biology

Abstract

The aim of this study is to elucidate the relation between expression of coxsackie and adenovirus receptor (CAR) and formation of lung cancer. We investigated the expression of CAR by immunohistochemistry, Western blot and real-time RT-PCR in 120 lung cancers. We found that CAR expression in tumor tissues was significantly higher than that in normal lung tissues. CAR expression had a correlation with the histological grade of lung squamous cell carcinoma; however, there was no relationship between the CAR expression and the other clinical pathological features. In vitro, silencing or overexpression of CAR could significantly inhibit or promote colony formation, cell adhesion, and invasion in A549 cells. Our findings demonstrated that CAR may play an essential role in the formation of lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CAR:

the coxsackie and adenovirus receptor

SCC:

squamous cell carcinoma

AC:

adenocarcinoma

ANOVA:

a one-way analysis of variance

OD:

the average optical density

References

  1. Ito M, Kodama M, Masuko M, et al. Expression of coxsackievirus and adenovirus receptor in hearts of rats with experimental autoimmune myocarditis. Circ Res. 2000;86:275–80.

    Article  PubMed  CAS  Google Scholar 

  2. Okegawa T, Pong RC, Li Y, et al. The mechanism of the growth-inhibitory effect of coxsackie and adenovirus receptor (CAR) on human bladder cancer: a functional analysis of car protein structure. Cancer Res. 2001;61:6592–600.

    PubMed  CAS  Google Scholar 

  3. Cohen CJ, Shieh JT, Pickles RJ, et al. The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction. Proc Natl Acad Sci U S A. 2001;98:15191–6.

    Article  PubMed  CAS  Google Scholar 

  4. Walters RW, Freimuth P, Moninger TO, et al. Adenovirus fiber disrupts CAR-mediated intercellular adhesion allowing virus escape. Cell. 2002;110:789–99.

    Article  PubMed  CAS  Google Scholar 

  5. Kim M, Sumerel LA, Belousova N, et al. The coxsackievirus and adenovirus receptor acts as a tumour suppressor in malignant glioma cells. Br J Cancer. 2003;88:1411–6.

    Article  PubMed  CAS  Google Scholar 

  6. Wang BB, Chen G, Li FJ, et al. Inhibitory effect of coxsackie adenovirus receptor on invasive and metastatic phenotype of ovarian cancer cell line SKOV3. Ai Zheng. 2005;24:1054–8.

    PubMed  CAS  Google Scholar 

  7. Hemmi S, Geertsen R, Mezzacasa A, et al. The presence of human coxsackievirus and adenovirus receptor is associated with efficient adenovirus-mediated transgene expression in human melanoma cell cultures. Hum Gene Ther. 1998;9:2363–73.

    Article  PubMed  CAS  Google Scholar 

  8. Jee YS, Lee SG, Lee JC, et al. Reduced expression of coxsackievirus and adenovirus receptor (CAR) in tumor tissue compared to normal epithelium in head and neck squamous cell carcinoma patients. Anticancer Res. 2002;22:2629–34.

    PubMed  CAS  Google Scholar 

  9. Kawashima H, Ogose A, Yoshizawa T, et al. Expression of the coxsackievirus and adenovirus receptor in musculoskeletal tumors and mesenchymal tissues: efficacy of adenoviral gene therapy for osteosarcoma. Cancer Sci. 2003;94:70–5.

    Article  PubMed  CAS  Google Scholar 

  10. Cripe TP, Dunphy EJ, Holub AD, et al. Fiber knob modifications overcome low, heterogeneous expression of the coxsackievirus-adenovirus receptor that limits adenovirus gene transfer and oncolysis for human rhabdomyosarcoma cells. Cancer Res. 2001;61:2953–60.

    PubMed  CAS  Google Scholar 

  11. Rauen KA, Sudilovsky D, Le JL, et al. Expression of the coxsackie adenovirus receptor in normal prostate and in primary and metastatic prostate carcinoma: potential relevance to gene therapy. Cancer Res. 2002;62:3812–8.

    PubMed  CAS  Google Scholar 

  12. Qin M, Escuadro B, Dohadwala M, et al. A novel role for the coxsackie adenovirus receptor in mediating tumor formation by lung cancer cells. Cancer Res. 2004;18:6377–80.

    Article  Google Scholar 

  13. Wang Y, Wang S, Bao Y, et al. Coxsackievirus and adenovirus receptor expression in non-malignant lung tissues and clinical lung cancers. J Mol Histol. 2006;37:153–60.

    Article  PubMed  CAS  Google Scholar 

  14. Gu AK, Sun LN, Chen ZL, et al. Expression of coxsackievirus and adenovirus receptor in non-small cell lung cancer and its significance. Zhonghua Zhong Liu Za Zhi. 2009;31:278–81.

    PubMed  CAS  Google Scholar 

  15. Travis WD, Brambilla E, Müller-Hermelink HK, et al. Pathology and genetics of tumours of the lung, pleura, thymus and heart. In: Kleihues P, Sobin LH, editors. World Health Organization Classification of Tumours. Lyon: IARC Press; 2004.

    Google Scholar 

  16. Xu XL, Wang X, Chen ZL, et al. Overexpression of Grb2-associated Binder 2 in Human Lung Cancer. Int J Biol Sci. 2011;7:497–505.

    Google Scholar 

  17. Brüning A, Runnebaum IB. CAR is a cell–cell adhesion protein in human cancer cells and is expressionally modulated by dexamethasone, TNFalpha, and TGFbeta. Gene Ther. 2003;10:198–205.

    Article  PubMed  Google Scholar 

  18. Chen ZL, Zhang YX, Yang J, et al. Estrogen promotes benzo[a]pyrene-induced lung carcinogenesis through oxidative stress damage and cytochrome c-mediated caspase-3 activation pathways in female mice. Cancer Lett. 2011;308:14–22.

    Article  PubMed  CAS  Google Scholar 

  19. Hoppmann S, Steinbach J, Pietzsch J. Scavenger receptors are associated with cellular interactions of S100A12 in vitro and in vivo. Int J Biochem Cell Biol. 2010;42:651–61.

    Article  PubMed  CAS  Google Scholar 

  20. Toy EP, Azodi M, Folk NL, et al. Enhanced ovarian cancer tumorigenesis and metastasis by the macrophage colony-stimulating factor. Neoplasia. 2009;11:136–44.

    PubMed  CAS  Google Scholar 

  21. Wang G, Mao W, Zheng S. MicroRNA-183 regulates Ezrin expression in lung cancer cells. FEBS Lett. 2008;582:3663–8.

    Article  PubMed  CAS  Google Scholar 

  22. Bruning A, Stickeler E, Diederich D, et al. Coxsackie and adenovirus receptor promotes adenocarcinoma cell survival and is expressionally activated after transition from preneoplastic precursor lesions to invasive adenocarcinomas. Clin Cancer Res. 2005;11:4316–20.

    Article  PubMed  Google Scholar 

  23. Martin TA, Watkins G, Jiang WG. The Coxsackie-adenovirus receptor has elevated expression in human breast cancer. Clin Exp Med. 2005;5:122–8.

    Article  PubMed  CAS  Google Scholar 

  24. Veena MS, Qin M, Andersson A, et al. CAR mediates efficient tumor engraftment of mesenchymal type lung cancer cells. Lab Invest. 2009;89:875–86.

    Article  PubMed  CAS  Google Scholar 

  25. Mirza M, Raschperger E, Philipson L, et al. The cell surface protein coxsackie- and adenovirus receptor (CAR) directly associates with the Ligand-of-Numb Protein-X2 (LNX2). Exp Cell Res. 2005;309:110–20.

    Article  PubMed  CAS  Google Scholar 

  26. Sollerbrant K, Raschperger E, Mirza M, et al. The Coxsackievirus and adenovirus receptor (CAR) forms a complex with the PDZ domain-containing protein ligand-of-numb protein-X (LNX). J Biol Chem. 2003;278:7439–44.

    Article  PubMed  CAS  Google Scholar 

  27. Guo M, Jan LY, Jan YN. Control of daughter cell fates during asymmetric division: interaction of Numb and Notch. Neuron. 1996;17:27–41.

    Article  PubMed  Google Scholar 

  28. Rhyu MS, Jan LY, Jan YN. Asymmetric distribution of numb protein during division of the sensory organ precursor cell confers distinct fates to daughter cells. Cell. 1994;76:477–91.

    Article  PubMed  CAS  Google Scholar 

  29. Dho SE, Jacob S, Wolting CD, et al. The mammalian numb phosphotyrosine-binding domain. Characterization of binding specificity and identification of a novel PDZ domain-containing numb binding protein, LNX. J Biol Chem. 1998;273:9179–87.

    Article  PubMed  CAS  Google Scholar 

  30. Westhoff B, Colaluca IN, D’Ario G, et al. Alterations of the Notch pathway in lung cancer. Proc Natl Acad Sci U S A. 2009;106:22293–8.

    Article  PubMed  CAS  Google Scholar 

  31. Zheng Q, Qin H, Zhang H, et al. Notch signaling inhibits growth of the human lung adenocarcinoma cell line A549. Oncol Rep. 2007;17:847–52.

    PubMed  CAS  Google Scholar 

Download references

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhongli Zhan or Jun-Wen Li.

Additional information

Authors Zhaoli Chen Qian Wang, and Jingran Sun contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Z., Wang, Q., Sun, J. et al. Expression of the coxsackie and adenovirus receptor in human lung cancers. Tumor Biol. 34, 17–24 (2013). https://doi.org/10.1007/s13277-012-0342-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-012-0342-2

Keywords

Navigation