Skip to main content

Advertisement

Log in

Discriminant function based on parameters of hyaluronic acid metabolism and nitric oxide to differentiate metastatic from non-metastatic colorectal cancer patients

  • Research Article
  • Published:
Tumor Biology

Abstract

Colorectal cancer (CRC) is one of the most common causes of cancer-related deaths worldwide. Because there is currently no useful serological marker for metastatic colorectal cancer, the search for simple biomarkers for colorectal cancer diagnosis and prognosis is needed. Hyaluronic acid level was determined by ELISA; in addition to its degrading enzymes, degradation products and nitric oxide were determined by standard techniques in 185 CRC patients with and without metastases. Statistical analyses were performed by logistic regression and receiver-operating characteristic (ROC) curves. The multivariate discriminate analysis (MDA) selects a function based on absolute values of six biochemical markers; score = [-0.62 (numerical constant) + hyaluronic acid (pg/l) × 0.002 + hyaluronidase (mg N-acetyl glucosamine/ml/18 h) × 0.009 − β-glucuronidase (μmol/ml/min) × 0.07 + N-acetyl-β-d-glucosaminidase (μmol/ml/min) × 0.019 − glucuronic acid (μg/dl) × 0.001 + nitric oxide (μmol/l) × 0.01]. The selected MDA function correctly classified 92% of the metastatic CRC patients at a discriminate cut-off score = 0.24 (i.e., less than 0.24 indicated patients with non-metastatic colon cancer, and greater than 0.24 indicated patients with metastatic colon cancer with high degrees of sensitivity (100%) and specificity (93%)). The positive predictive and negative predictive values were also high (81% and 85%, respectively). Colorectal cancer patients can be simply and efficiently classified into metastatic or non-metastatic using their MDA score.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lurje G, Zhang W, Lenz HJ. Molecular prognostic markers in locally advanced colon cancer. Clin Colorectal Cancer. 2007;6:683–90.

    CAS  PubMed  Google Scholar 

  2. Gupta AK, Brenner DE, Turgeon DK. Early detection of colon cancer: new tests on the horizon. Mol Diagn Ther. 2008;12:77–85.

    PubMed  Google Scholar 

  3. Huerta S. Recent advances in the molecular diagnosis and prognosis of colorectal cancer. Expert Rev Mol Diagn. 2008;8:277–88.

    CAS  PubMed  Google Scholar 

  4. Moertel CG, Fleming TR, Macdonald JS, Haller DG, Laurie JA, Tangen C. An evaluation of the carcinoembryonic antigen (CEA) test for monitoring patients with resected colon cancer. JAMA. 1993;270:943–7.

    CAS  PubMed  Google Scholar 

  5. Fong S, Garcia Vega G, Leon V. Carcinoembryonic antigen fraction in digestive cancer. Neoplasma. 1985;32:199–208.

    CAS  PubMed  Google Scholar 

  6. Sugarbaker PH. Role of carcinoembryonic antigen assay in the management of cancer. Adv Immun Cancer Ther. 1985;1:167–93.

    CAS  PubMed  Google Scholar 

  7. Auvinen P, Tammi R, Parkkinen J, et al. Hyaluronan in peritumoral stroma and malignant cells associates with breast cancer spreading and predicts survival. Am J Pathol. 2000;156:529–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Laurent TC, Fraser JR. Hyaluronan. FASEB J. 1992;6:2397–404.

    CAS  PubMed  Google Scholar 

  9. Lipponen P, Aaltomaa S, Tammi R, Tammi M, Agren U, Kosma VM. High stromal hyaluronan level is associated with poor differentiation and metastasis in prostate cancer. Eur J Cancer. 2001;37:849–56.

    CAS  PubMed  Google Scholar 

  10. Hautmann SH, Lokeshwar VB, Schroeder GL, et al. Elevated tissue expression of hyaluronic acid and hyaluronidase validates the HA-HAase urine test for bladder cancer. J Urol. 2001;165:2068–74.

    CAS  PubMed  Google Scholar 

  11. Pirinen R, Tammi R, Tammi M, et al. Prognostic value of hyaluronan expression in non-small-cell lung cancer: increased stromal expression indicates unfavorable outcome in patients with adenocarcinoma. Int J Cancer. 2001;95:12–7.

    CAS  PubMed  Google Scholar 

  12. Itano N, Atsumi F, Sawai T, et al. Abnormal accumulation of hyaluronan matrix diminishes contact inhibition of cell growth and promotes cell migration. Proc Natl Acad Sci U S A. 2002;99:3609–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Toole BP. Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer. 2004;4:528–39.

    CAS  PubMed  Google Scholar 

  14. Paiva P, Van Damme MP, Tellbach M, Jones RL, Jobling T, Salamonsen LA. Expression patterns of hyaluronan, hyaluronan synthases and hyaluronidases indicate a role for hyaluronan in the progression of endometrial cancer. Gynecol Oncol. 2005;98:193–202.

    CAS  PubMed  Google Scholar 

  15. Masamune H, Aizawa I. Biochemical studies on carbohydrates. 198. Spectrophotometric determination of glucuronic acid in co-presence of galacturonic acid. Tohoku J Exp Med. 1957;65:359–65.

    CAS  PubMed  Google Scholar 

  16. Lokeshwar VB, Obek C, Pham HT, et al. Urinary hyaluronic acid and hyaluronidase: markers for bladder cancer detection and evaluation of grade. J Urol. 2000;163:348–56.

    CAS  PubMed  Google Scholar 

  17. Pham HT, Block NL, Lokeshwar VB. Tumor-derived hyaluronidase: a diagnostic urine marker for high-grade bladder cancer. Cancer Res. 1997;57:778–83.

    CAS  PubMed  Google Scholar 

  18. Cadenas E. Mitochondrial free radical production and cell signaling. Mol Aspects Med. 2004;25:17–26.

    CAS  PubMed  Google Scholar 

  19. Soltes L, Mendichi R, Kogan G, Schiller J, Stankovska M, Arnhold J. Degradative action of reactive oxygen species on hyaluronan. Biomacromolecules. 2006;7:659–68.

    CAS  PubMed  Google Scholar 

  20. Hutterer F. Degradation of mucopolysaccharides by hepatic lysosomes. Biochim Biophys Acta. 1966;115:312–9.

    CAS  PubMed  Google Scholar 

  21. Pugh D, Leaback DH, Walker PG. Studies on glucosaminidase; N-acetyl-beta-glucosaminidase in rat kidney. Biochem J. 1957;65:464–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Goldbarg JA, Pineda EP, Banks BM, Rutenburg AM. A method for the colorimetric determination of beta-glucuronidase in urine, serum, and tissue; assay of enzymatic activity in health and disease. Gastroenterology. 1959;36:193–201.

    CAS  PubMed  Google Scholar 

  23. Boas NF. Method for the determination of hexosamines in tissues. J Biol Chem. 1953;204:553–63.

    CAS  PubMed  Google Scholar 

  24. Nir I. Determination of glucuronic acid by naphthoresorcinol. Anal Biochem. 1964;8:20–3.

    CAS  PubMed  Google Scholar 

  25. Berkels R, Purol-Schnabel S, Roesen R. Measurement of nitric oxide by reconversion of nitrate/nitrite to NO. Methods Mol Biol. 2004;279:1–8.

    CAS  PubMed  Google Scholar 

  26. Fong Y, Blumgart LH. Hepatic colorectal metastasis: current status of surgical therapy. Oncology (Williston Park). 1998;12:1489–98. discussion 98-500, 503.

    CAS  Google Scholar 

  27. Tempfer C, Losch A, Heinzl H, et al. Prognostic value of immunohistochemically detected CD44 isoforms CD44v5, CD44v6 and CD44v7-8 in human breast cancer. Eur J Cancer. 1996;32A:2023–5.

    CAS  PubMed  Google Scholar 

  28. Abu-Yousif AO, Rizvi I, Evans CL, Celli JP, Hasan T. PuraMatrix encapsulation of cancer cells. J Vis Exp. 2009.

  29. Llaneza A, Vizoso F, Rodriguez JC, et al. Hyaluronic acid as prognostic marker in resectable colorectal cancer. Br J Surg. 2000;87:1690–6.

    CAS  PubMed  Google Scholar 

  30. Wang C, Tammi M, Guo H, Tammi R. Hyaluronan distribution in the normal epithelium of esophagus, stomach, and colon and their cancers. Am J Pathol. 1996;148:1861–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ropponen K, Tammi M, Parkkinen J, et al. Tumor cell-associated hyaluronan as an unfavorable prognostic factor in colorectal cancer. Cancer Res. 1998;58:342–7.

    CAS  PubMed  Google Scholar 

  32. Savani RC, Cao G, Pooler PM, Zaman A, Zhou Z, DeLisser HM. Differential involvement of the hyaluronan (HA) receptors CD44 and receptor for HA-mediated motility in endothelial cell function and angiogenesis. J Biol Chem. 2001;276:36770–8.

    CAS  PubMed  Google Scholar 

  33. Christopoulos TA, Papageorgakopoulou N, Theocharis DA, Mastronikolis NS, Papadas TA, Vynios DH. Hyaluronidase and CD44 hyaluronan receptor expression in squamous cell laryngeal carcinoma. Biochim Biophys Acta. 2006;1760:1039–45.

    CAS  PubMed  Google Scholar 

  34. Hida J, Matsuda T, Kitaoka M, Machidera N, Kubo R, Yasutomi M. The role of basement membrane in colorectal cancer invasion and liver metastasis. Cancer. 1994;74:592–8.

    CAS  PubMed  Google Scholar 

  35. Hiltunen EL, Anttila M, Kultti A, et al. Elevated hyaluronan concentration without hyaluronidase activation in malignant epithelial ovarian tumors. Cancer Res. 2002;62:6410–3.

    CAS  PubMed  Google Scholar 

  36. Knudson W, Biswas C, Toole BP. Interactions between human tumor cells and fibroblasts stimulate hyaluronate synthesis. Proc Natl Acad Sci U S A. 1984;81:6767–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Knudson W, Biswas C, Li XQ, Nemec RE, Toole BP. The role and regulation of tumour-associated hyaluronan. Ciba Found Symp. 1989;143:150–9. discussion 9-69, 281-5.

    CAS  PubMed  Google Scholar 

  38. Liu D, Pearlman E, Diaconu E, et al. Expression of hyaluronidase by tumor cells induces angiogenesis in vivo. Proc Natl Acad Sci U S A. 1996;93:7832–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lokeshwar VB, Lokeshwar BL, Pham HT, Block NL. Association of elevated levels of hyaluronidase, a matrix-degrading enzyme, with prostate cancer progression. Cancer Res. 1996;56:651–7.

    CAS  PubMed  Google Scholar 

  40. Parish CR, Freeman C, Hulett MD. Heparanase: a key enzyme involved in cell invasion. Biochim Biophys Acta. 2001;1471:M99–M108.

    CAS  PubMed  Google Scholar 

  41. Friedmann Y, Vlodavsky I, Aingorn H, et al. Expression of heparanase in normal, dysplastic, and neoplastic human colonic mucosa and stroma. Evidence for its role in colonic tumorigenesis. Am J Pathol. 2000;157:1167–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ohta H, Ono M, Sekiya C, Namiki M. Serum immunoreactive beta-glucuronidase determined by an enzyme-linked immunosorbent assay in patients with hepatic diseases. Clin Chim Acta. 1992;208:9–21.

    CAS  PubMed  Google Scholar 

  43. Abercrombie M. Contact-dependent behavior of normal cells and the possible significance of surface changes in virus-induced transformation. Cold Spring Harb Symp Quant Biol. 1962;27:427–31.

    CAS  PubMed  Google Scholar 

  44. Karatay S, Kiziltunc A, Yildirim K, Karanfil RC, Senel K. Effects of different hyaluronic acid products on synovial fluid NO levels in knee osteoarthritis. Clin Rheumatol. 2005;24:497–501.

    PubMed  Google Scholar 

  45. Kalaci A, Yilmaz HR, Aslan B, Sogut S, Yanat AN, Uz E. Effects of hyaluronan on nitric oxide levels and superoxide dismutase activities in synovial fluid in knee osteoarthritis. Clin Rheumatol. 2007;26:1306–11.

    PubMed  Google Scholar 

  46. Szatrowski TP, Nathan CF. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res. 1991;51:794–8.

    CAS  PubMed  Google Scholar 

  47. Toyokuni S, Okamoto K, Yodoi J, Hiai H. Persistent oxidative stress in cancer. FEBS Lett. 1995;358:1–3.

    CAS  PubMed  Google Scholar 

  48. Gupta M, Mazumder UK, Kumar RS, Kumar TS. Antitumor activity and antioxidant role of Bauhinia racemosa against Ehrlich ascites carcinoma in Swiss albino mice [corrected]. Acta Pharmacol Sin. 2004;25:1070–6.

    CAS  PubMed  Google Scholar 

  49. Karihtala P, Soini Y, Auvinen P, Tammi R, Tammi M, Kosma VM. Hyaluronan in breast cancer: correlations with nitric oxide synthases and tyrosine nitrosylation. J Histochem Cytochem. 2007;55:1191–8.

    CAS  PubMed  Google Scholar 

  50. Attallah AM, el SA Toson, El-Waseef AM, Abo-Seif MA, Omran MM, Shiha GE. Discriminant function based on hyaluronic acid and its degrading enzymes and degradation products for differentiating cirrhotic from non-cirrhotic liver diseased patients in chronic HCV infection. Clin Chim Acta. 2006;369:66–72.

    CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hatem A. El-mezayen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-mezayen, H.A., Toson, ES.A., Darwish, H. et al. Discriminant function based on parameters of hyaluronic acid metabolism and nitric oxide to differentiate metastatic from non-metastatic colorectal cancer patients. Tumor Biol. 33, 995–1004 (2012). https://doi.org/10.1007/s13277-012-0332-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-012-0332-4

Keywords

Navigation