Skip to main content

Advertisement

Log in

A combination of 2-deoxy-d-glucose and 6-aminonicotinamide induces oxidative stress mediated selective radiosensitization of malignant cells via mitochondrial dysfunction

  • Research Article
  • Published:
Tumor Biology

Abstract

Oxidative stress-mediated mitochondrial dysfunction is known to induce intrinsic pathway of apoptosis. Previously, we have shown that a combination of metabolic modifiers 2-deoxy-D-glucose (2-DG) and 6-aminonicotinamide (6-AN) results in oxidative stress-mediated radiosensitization of malignant cells via noncoordinated expression of antioxidant defense. We now show that the combination (2-DG + 6-AN + 2Gy) induces significant alterations in mitochondrial membrane potential and oxidative damage to lipid and proteins selectively in malignant cells resulting in the release of cytochrome c from mitochondria and increase in Bax/Bcl-2 ratio stimulating intrinsic pathway of apoptosis, besides enhancing the mitotic death linked to cytogenetic damage. These results highlight the role of mitochondrial dysfunction in selective radiosensitization by 2-DG + 6-AN, besides inhibition of energy-linked DNA repair processes and generation of oxidative stress reported earlier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

2-DG:

2-Deoxy-d-glucose

6-AN:

6-Aminonicotinamide

ROS:

Reactive oxygen species

PBS:

Phosphate-buffered saline

PI:

Propidium iodide

Δψm:

Mitochondrial membrane potential

JC-1:

5,5′,6,6′-Tetrachloro-1,1′,3,3′-tetraethylbenzimidazole-carbocyanine iodide

DHE:

Dihydroethidium

NAO:

10-N-nonyl acridine orange

FCCP:

Carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone

FITC:

Fluorescein isothiocyanate

References

  1. Varshney R, Dwarakanath BS, Jain V. Radiosensitization by 6-aminonicotinamide and 2-deoxy-d-glucose in human cancer cells. Int J Radiat Biol. 2005;81:397–408.

    Article  PubMed  CAS  Google Scholar 

  2. Spitz DR, Sim JE, Ridnour LA, Galoforo SS, Lee YJ. Glucose deprivation-induced oxidative stress in human tumor cells: a fundamental defect in metabolism? Ann NY Acad Sci. 2000;899:349–62.

    Article  PubMed  CAS  Google Scholar 

  3. Sharma PK, Bhardwaj R, Dwarakanath BS, Varshney R. Metabolic oxidative stress induced by a combination of 2-DG and 6-AN enhances radiation damage selectively in malignant cells via non coordinated expression of antioxidant enzymes. Cancer Lett. 2010;295:154–66.

    Article  PubMed  CAS  Google Scholar 

  4. England K, O’Driscoll C, Cotter TG. Carbonylation of glycolytic proteins is a key response to drug-induced oxidative stress and apoptosis. Cell Death Differ. 2004;11:252–60.

    Article  PubMed  CAS  Google Scholar 

  5. Das UN. Essential fatty acids, lipid peroxidation and apoptosis. Prostaglandins Leukot Essent Fatty Acids. 1999;61:157–63.

    Article  PubMed  CAS  Google Scholar 

  6. Stark G. The effect of ionizing radiation on lipid membranes. Biochim Biophys Acta. 1991;1071:103–22.

    PubMed  CAS  Google Scholar 

  7. Pandey BN, Mishra KP. In vitro studies on radiation induced membrane oxidative damage in apoptotic death of mouse thymocytes. Intl J Low Radiat. 2003;1:113–9.

    Article  CAS  Google Scholar 

  8. Kalinich JF, Ramakrishnan R, McClain DE, Ramakrishnan N. 4-Hydroxynonenal, an end-product of lipid peroxidation, induces apoptosis in human leukemic T- and B-cell lines. Free Radic Res. 2000;33:349–58.

    Article  PubMed  CAS  Google Scholar 

  9. Green DR, Reed JC. Mitochondria and apoptosis. Science. 1998;281:1309–12.

    Article  PubMed  CAS  Google Scholar 

  10. Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol. 2003;552:335–44.

    Article  PubMed  CAS  Google Scholar 

  11. Ling YH, Liebes L, Zou Y, Perez-Soler R. Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic response to Bortezomib, a novel proteasome inhibitor, in human H460 non-small cell lung cancer cells. J Biol Chem. 2003;278:33714–23.

    Article  PubMed  CAS  Google Scholar 

  12. Hockenbery DM, Oltvai ZN, Yin XM, Milliman CL, Korsmeyer SJ. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell. 1993;75:241–51.

    Article  PubMed  CAS  Google Scholar 

  13. Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science. 2001;292:727–30.

    Article  PubMed  CAS  Google Scholar 

  14. Zong WX, Lindsten T, Ross AJ, MacGregor GR, Thompson CB. BH3-only proteins that bind pro-survival Bcl-2 family members fail to induce apoptosis in the absence of Bax and Bak. Genes Dev. 2001;15:1481–6.

    Article  PubMed  CAS  Google Scholar 

  15. Ryter SW, Kim HP, Hoetzel A, et al. Mechanisms of cell death in oxidative stress. Antioxid Redox Signaling. 2007;9:49–89.

    Article  CAS  Google Scholar 

  16. Marchetti P, Castedo M, Susin SA, et al. Mitochondrial permeability transition is a central coordinating event of apoptosis. J Exp Med. 1996;184:1155–60.

    Article  PubMed  CAS  Google Scholar 

  17. Cao J, Liu Y, Li J, et al. Curcumin induces apoptosis through mitochondrial hyperpolarization and mtDNA damage in human hepatoma G2 cells. Free Radic Biol Med. 2007;43:968–75.

    Article  PubMed  CAS  Google Scholar 

  18. Varshney R, Gupta S, Dwarakanath BS. Radiosensitization of Murine Ehrlich ascites tumor by a combination of 2-deoxy-d-glucose and 6-aminonicotinamide. Technol Cancer Res. 2004;3:659–63.

    CAS  Google Scholar 

  19. Jain V. Modifications of radiation responses by 2-deoxy-d-glucose in normal and cancer cells. Ind J Nucl Med. 1996;11:8–17.

    Google Scholar 

  20. Dwarakanath BS, Zolzer F, Chandna S, et al. Heterogeneity in 2-deoxy-d-glucose induced modifications in energetic and radiation responses of human tumor cell lines. Int J Radiat Oncol Biol Phys. 2001;51:1151–61.

    Google Scholar 

  21. Pandey BN, Mishra KP. Oxidative membrane damage and its involvement in radiation induced apoptotic cell death. Iran J Radiat Res. 2003;1:17–22.

    Google Scholar 

  22. Kantengwa S, Jornot L, Devenoges C, Nicod LP. Superoxide anions induce the maturation of human dendritic cells. Am J Respir Crit Care Med. 2003;167:431–7.

    Article  PubMed  Google Scholar 

  23. Varshney R, Kale RK. Effects of calmodulin antagonists on radiation induced lipid peroxidation in microsomes. Int J Rad Biol. 1990;58:733–43.

    Article  PubMed  CAS  Google Scholar 

  24. Levine RL. Mixed-function oxidation of histidine residues. Methods Enzymol. 1984;107:370–6.

    Article  PubMed  CAS  Google Scholar 

  25. Athar M, Chaudhury NK, Hussain ME, Varshney R. Hoechst 33342 enhances radiosensitization of malignant glioma cells via increase in mitochondrial ROS. Free Radic Res. 2010;44:936–49.

    Article  PubMed  CAS  Google Scholar 

  26. Maftah A, Ratinaud M, Dumas M, Bonte F, Meybeck A, Julien R. Human epidermal cells progressively lose their cardiolipins during ageing without change in mitochondrial transmembrane potential. Mech Ageing Dev. 1994;77:83–96.

    Article  PubMed  CAS  Google Scholar 

  27. Warburg O, Posener K, Negelein E. On the metabolism of cancer cells. Biochemistry. 1924;152:319–44.

    Google Scholar 

  28. Averill-Bates DA, Przybytkowski E. The role of glucose in cellular defenses against cytotoxicity of hydrogen peroxide in Chinese hamster ovary cells. Arch Biochem Biophys. 1994;312:52–8.

    Article  PubMed  CAS  Google Scholar 

  29. Jelluma N, Yang X, Stokoe D, Evan GI, Dansen TB, Haas-Kogan DA. Glucose withdrawal induces oxidative stress followed by apoptosis in glioblastoma cells but not in normal human astrocytes. Mol Cancer Res. 2006;4:319–30.

    Article  PubMed  CAS  Google Scholar 

  30. Lee YJ, Galoforo SS, Berns CM, Tong WP, Kim HRC, Corry PM. Glucose deprivation-induced cytotoxicity in drug resistant human breast carcinoma MCF-7/ADR cells: role of c-myc and bcl-2 in apoptotic cell death. J Cell Sci. 1997;110:681–6.

    PubMed  CAS  Google Scholar 

  31. Coleman MC, Asbury CR, Daniels D, et al. 2-Deoxy-d-glucose causes cytotoxicity, oxidative stress, and radiosensitization in pancreatic cancer. Free Rad Biol Med. 2008;44:322–31.

    Article  PubMed  CAS  Google Scholar 

  32. Xu RH, Pelicano H, Zhou Y, et al. Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res. 2005;65:613–21.

    Article  PubMed  CAS  Google Scholar 

  33. Ahmad IM, Aykin-Burns N, Sim JE, et al. Mitochondrial O •−2 and H2O2 mediate glucose deprivation-induced cytotoxicity and oxidative stress in human cancer cells. J Biol Chem. 2004;280:4254–63.

    Article  PubMed  Google Scholar 

  34. Choi KM, Kang CM, Cho ES, Kang SM, Lee SB, Um HD. Ionizing radiation-induced micronucleus formation is mediated by reactive oxygen species that are produced in a manner dependent on mitochondria, Nox1, and JNK. Oncol Rep. 2007;17:1183–8.

    PubMed  CAS  Google Scholar 

  35. Widel M, Jedrus S, Lukaszczyk B, Raczek-Zwierzycka K, Swierniak A. Radiation-induced micronucleus frequency in peripheral blood lymphocytes is correlated with normal tissue damage in patients with cervical carcinoma undergoing radiotherapy. Radiat Res. 2003;159(6):713–21.

    Article  PubMed  CAS  Google Scholar 

  36. Paglin S, Delohery T, Erlandson R, Yahalom J. Radiation induced micronuclei formation in human breast cancer cells: dependence on serum and cell cycle distribution. Biochem Biophys Res Comm. 1997;237:678–84.

    Article  PubMed  CAS  Google Scholar 

  37. Liu Y, Xiao-Dong S, Liu W, Tian-Yi Z, Zuo J. Glucose deprivation induces mitochondrial dysfunction and oxidative stress in PC12 cell line. J Cell Mol Med. 2003;7:49–56.

    Article  PubMed  CAS  Google Scholar 

  38. Kirkland RA, Frankiin JL. Evidence for redox regulation of cytochrome c release during programmed neuronal death: antioxidant effects of protein synthesis and caspase inhibition. J Neurosci. 2001;21:1949–63.

    PubMed  CAS  Google Scholar 

  39. Gottlob K, Majewski N, Kennedy S, Kandel E, Robey RB, Hay N. Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev. 2001;15:1406–18.

    Article  PubMed  CAS  Google Scholar 

  40. Vander Heiden MG, Chandel NS, Li XX, Schumacker PT, Colombini M, Thompson CB. Outer mitochondrial membrane permeability can regulate coupled respiration and cell survival. Proc Natl Acad Sci USA. 2000;97:4666–71.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We are thankful to Dr. R P Tripathi, Director, Institute of Nuclear Medicine and Allied Sciences for his support. We thank Dr. N. Raghuram, Associate Prof. School of Biotechnology, Guru Gobind Singh Indraprastha University, Delhi for his technical comments. We also thank Mrs. Namita kalra for her help in flowcytometry experiments. Mr. Pradeep Kumar Sharma is a recipient of ICMR fellowship.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Varshney.

Additional information

Richa Bhardwaj and Pradeep Kumar Sharma contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhardwaj, R., Sharma, P.K., Jadon, S.S. et al. A combination of 2-deoxy-d-glucose and 6-aminonicotinamide induces oxidative stress mediated selective radiosensitization of malignant cells via mitochondrial dysfunction. Tumor Biol. 32, 951–964 (2011). https://doi.org/10.1007/s13277-011-0197-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-011-0197-y

Keywords

Navigation