Skip to main content
Log in

Zinc induces cell cycle arrest and apoptosis by upregulation of WIG-1 in esophageal squamous cancer cell line EC109

  • Research Article
  • Published:
Tumor Biology

Abstract

Zinc deficiency was implicated in the etiologies of human esophageal squamous cell carcinoma (ESCC). Wild-type p53-induced gene 1 (WIG-1), a kind of zinc finger protein, was cloned from the human 3q26.3 region and encoded a putative polypeptide of 289 amino acids. Our previous studies have demonstrated that the expression of WIG-1 was downregulated in ESCC tissues. Herein, we investigated the effect of zinc on cell proliferation, apoptosis, as well as expression of WIG-1 in EC109 cells. Meanwhile, an RNAi vector of WIG-1 was transfected into EC109 cells and the effect of zinc on WIG-1 expression was investigated. We found that zinc could suppress cell proliferation and induce G0/G1 cell cycle arrest and apoptosis of EC109, and this efficacy might result from the expression altering of several apoptosis-related genes, such as Bax, p21 WAF, and cyclin D1. In particular, upregulation of WIG-1 was observed after zinc supplementation, indicating that WIG-1 might be involved in the zinc-induced cell cycle arrest and apoptosis of EC109 cells by regulating the expression of Bax, p21 WAF, and cyclin D1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Berg JM, Shi Y. The galvanization of biology: a growing appreciation for the roles of zinc. Science. 1996;271:1081–5. doi:10.1126/science.271.5252.1081.

    Article  PubMed  CAS  Google Scholar 

  2. Sky-Peck HH. Trace metals and neoplasia. Clin Physiol Biochem. 1986;4:99–111.

    PubMed  CAS  Google Scholar 

  3. van Rensburg SJ. Epidemiologic and dietary evidence for a specific nutritional predisposition to esophageal cancer. J Natl Cancer Inst. 1981;67:243–51.

    PubMed  Google Scholar 

  4. Fong LY, Sivak A, Newberne PM. Zinc deficiency and methylbenzylnitrosamine-induced esophageal cancer in rats. J Natl Cancer Inst. 1978;61:145–50.

    PubMed  CAS  Google Scholar 

  5. Fong LY, Li JX, Farber JL, Magee PN. Cell proliferation and esophageal carcinogenesis in the zinc-deficient rat. Carcinogenesis. 1996;17:1841–8. doi:10.1093/carcin/17.9.1841.

    Article  PubMed  CAS  Google Scholar 

  6. Fong LY, Ishii H, Nguyen VT, Vecchione A, Farber JL, Croce CM, et al. p53 deficiency accelerates induction and progression of esophageal and forestomach tumors in zinc-deficient mice. Cancer Res. 2003;63:186–95.

    PubMed  CAS  Google Scholar 

  7. Lipman TO, Diamond A, Mellow MH, Patterson KY. Esophageal zinc content in human squamous esophageal cancer. J Am Coll Nutr. 1987;6:41–6.

    PubMed  CAS  Google Scholar 

  8. Kumar A, Chatopadhyay T, Raziuddin M, Ralhan R. Discovery of deregulation of zinc homeostasis and its associated genes in esophageal squamous cell carcinoma using cDNA microarray. Int J Cancer. 2007;120:230–42. doi:10.1002/ijc.22246.

    Article  PubMed  CAS  Google Scholar 

  9. Abnet CC, Lai B, Qiao YL, Vogt S, Luo XM, Taylor PR, et al. Zinc concentration in esophageal biopsy specimens measured by X-ray fluorescence and esophageal cancer risk. J Natl Cancer Inst. 2005;97:301–6. doi:10.1093/jnci/dji042.

    Article  PubMed  CAS  Google Scholar 

  10. Zou YB, Guo W, Jiang YG, Wang RW, Zhao YP, Ma Z. Preparation of a novel monoclonal antibody specific for WIG-1 and detection of its expression pattern in human esophageal carcinoma. Hybridoma (Larchmt). 2010;29:431–6. doi:10.1089/hyb.2010.0043.

    Article  CAS  Google Scholar 

  11. Oka M, Hirazawa K, Yamamoto K, Iizuka N, Hazama S, Suzuki T, et al. Induction of Fas-mediated apoptosis on circulating lymphocytes by surgical stress. Ann Surg. 1996;223:434–40.

    Article  PubMed  CAS  Google Scholar 

  12. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, et al. Cancer statistics, 2008. CA Cancer J Clin. 2008;58:71–96. doi:10.3322/CA.2007.0010.

    Article  PubMed  Google Scholar 

  13. Enzinger PC, Mayer RJ. Esophageal cancer. N Engl J Med. 2003;349:2241–52.

    Article  PubMed  CAS  Google Scholar 

  14. Puca R, Nardinocchi L, Bossi G, Sacchi A, Rechavi G, Givol D, et al. Restoring wtp53 activity in HIPK2 depleted MCF7 cells by modulating metallothionein and zinc. Exp Cell Res. 2009;315:67–75. doi:10.1016/j.yexcr.2008.10.018.

    Article  PubMed  CAS  Google Scholar 

  15. Varmeh-Ziaie S, Okan I, Wang Y, Magnusson KP, Warthoe P, Strauss M, et al. WIG-1, a new p53-induced gene encoding a zinc finger protein. Oncogene. 1997;15:2699–704.

    Article  PubMed  CAS  Google Scholar 

  16. Hellborg F, Qian W, Mendez-Vidal C, Asker C, Kost-Alimova M, Wilhelm M, et al. Human WIG-1, a p53 target gene that encodes a growth inhibitory zinc finger protein. Oncogene. 2001;20:5466–74.

    Article  PubMed  CAS  Google Scholar 

  17. Israeli D, Tessler E, Haupt Y, Elkeles A, Wilder S, Amson R, et al. A novel p53-inducible gene, PAG608, encodes a nuclear zinc finger protein whose overexpression promotes apoptosis. EMBO J. 1997;16:4384–92.

    Article  PubMed  CAS  Google Scholar 

  18. Vilborg A, Glahder JA, Wilhelm MT, Bersani C, Corcoran M, Mahmoudi S, et al. The p53 target WIG-1 regulates p53 mRNA stability through an AU-rich element. Proc Natl Acad Sci USA. 2009;106:15756–61. doi:10.1073/pnas.0900862106.

    Article  PubMed  CAS  Google Scholar 

  19. Varmeh-Ziaie S, Ichimura K, Yang F, Rabbits P, Collins VP. Cloning and chromosomal localization of human WIG-1/PAG608 and demonstration of amplification with increased expression in primary squamous cell carcinoma of the lung. Cancer Lett. 2001;174:179–87. doi:10.1016/S0304-3835(01)00699-1.

    Article  PubMed  CAS  Google Scholar 

  20. Enge M, Bao W, Hedstrom E, Jackson SP, Moumen A, Selivanova G. MDM2-dependent downregulation of p21 and hnRNP K provides a switch between apoptosis and growth arrest induced by pharmacologically activated p53. Cancer Cell. 2009;15:171–83. doi:10.1016/j.ccr.2009.01.019.

    Article  PubMed  CAS  Google Scholar 

  21. Vilborg A, Bersani C, Wilhelm MT, Wiman KG. The p53 target WIG-1: a regulator of mRNA stability and stem cell fate? Cell Death Differ 2011 (in press)

  22. Brass N, Rácz A, Heckel D, Remberger K, Sybrecht GW, Meese EU. Amplification of the genes BCHE and SLC2A2 in 40% of squamous cell carcinoma of the lung. Cancer Res. 1997;57:2290–4.

    PubMed  CAS  Google Scholar 

  23. Sattler HP, Lensch R, Rohde V, Zimmer E, Meese E, Bonkhoff H, et al. Novel amplification unit at chromosome 3q25–q27 in human prostate cancer. Prostate. 2000;45:207–15.

    Article  PubMed  CAS  Google Scholar 

  24. Lazo PA. The molecular genetics of cervical carcinoma. Br J Cancer. 1999;80:2008–18. doi:10.1038/sj.bjc.6690635.

    Article  PubMed  CAS  Google Scholar 

  25. Hibi K, Trink B, Patturajan M, Westra WH, Caballero OL, Hill DE, et al. AIS is an oncogene amplified in squamous cell carcinoma. Proc Natl Acad Sci USA. 2000;97:5462–7. doi:10.1073/pnas.97.10.5462.

    Article  PubMed  CAS  Google Scholar 

  26. Sugita M, Tanaka N, Davidson S, Sekiya S, Varella-Garcia M, West J, et al. Molecular definition of a small amplification domain within 3q26 in tumors of cervix, ovary, and lung. Cancer Genet Cytogenet. 2000;117:9–18. doi:10.1016/S0165-4608(99)00135-1.

    Article  PubMed  CAS  Google Scholar 

  27. Imoto I, Yuki Y, Sonoda I, Ito T, Shimada Y, Imamura M, et al. Identification of ZASC1 encoding a Krüppel-like zinc finger protein as a novel target for 3q26 amplification in esophageal squamous cell carcinomas. Cancer Res. 2003;63:5691–6.

    PubMed  CAS  Google Scholar 

  28. Resnitzky D, Gossen M, Bujard H, Reed SI. Acceleration of the G1/S phase transition by expression of cyclins D1 and E with an inducible system. Mol Cell Biol. 1994;14:1669–79.

    PubMed  CAS  Google Scholar 

  29. Zhang H, Hannon GJ, Beach D. p21-containing cyclin kinases exist in both active and inactive states. Genes Dev. 1994;8:1750–8. doi:10.1101/gad.8.15.1750.

    Article  PubMed  CAS  Google Scholar 

  30. Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell. 1993;75:805–16. doi:10.1016/0092-8674(93)90499-G.

    Article  PubMed  CAS  Google Scholar 

  31. Zeng YX, El-Deiry WS. Regulation of p21WAF1/CIP1 expression by p53-independent pathways. Oncogene. 1996;12:1557–64.

    PubMed  CAS  Google Scholar 

  32. Shao ZM, Dawson MI, Li XS, Rishi AK, Sheikh MS, Han QX, et al. p53 independent G0/G1 arrest and apoptosis induced by a novel retinoid in human breast cancer cells. Oncogene. 1995;11:493–504.

    PubMed  CAS  Google Scholar 

  33. Reed JC. Dysregulation of apoptosis in cancer. J Clin Oncol. 1999;17:2941–53.

    PubMed  CAS  Google Scholar 

  34. Fong LY, Nguyen VT, Farber JL. Esophageal cancer prevention in zinc-deficient rats: rapid induction of apoptosis by replenishing zinc. J Natl Cancer Inst. 2001;93:1525–33. doi:10.1093/jnci/93.20.1525.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 30801137 and 81071976).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao-Guang Jiang.

Additional information

Wei Guo and Ying-Bo Zou contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, W., Zou, YB., Jiang, YG. et al. Zinc induces cell cycle arrest and apoptosis by upregulation of WIG-1 in esophageal squamous cancer cell line EC109. Tumor Biol. 32, 801–808 (2011). https://doi.org/10.1007/s13277-011-0182-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-011-0182-5

Keywords

Navigation