Skip to main content

Advertisement

Log in

Stable knockdown of S100A4 suppresses cell migration and metastasis of osteosarcoma

  • Research Article
  • Published:
Tumor Biology

Abstract

S100A4, a 10–12 kDa calcium-binding protein, plays functional roles in tumor progression and metastasis. The present study aimed to investigate the function of S100A4 in osteosarcoma (OS) metastasis, using a loss-of-function approach. Our previous expression profiling analysis revealed that S100a4 was preferentially expressed in the highly metastatic mouse OS cell line, LM8. Introducing a short hairpin ribonucleic acid (shRNA) targeting S100a4 using a newly established vector containing insulators and transposons, we established stable LM8 subclones with almost 100% silencing of endogenous S100a4 protein. These transfectants showed a significant suppression of cell migration in vitro as well as a marked reduction in their ability to colonize the lung and form pulmonary metastases in vivo following intravenous inoculation, whereas there was no significant change in cell proliferation or cell attachment to fibronectin, laminin, and type I collagen. Expression and phosphorylation of ezrin, an emerging OS metastasis-associated factor, and expression of MMPs, remained the same in S100a4-shRNA clones. In 61 human OS, immunohistochemical analysis showed that lesional cells in 85.2% samples expressed S100A4 protein, and the immunoreactivity was primarily cytoplasmic, but it also showed occasional nuclear localization. Chondroblastic and osteoblastic OS subtypes expressed more S100A4 than fibroblastic subtypes. The causative role of S100A4 in OS lung metastasis shown in the murine xenograft model, together with the high proportion of primary human OS expressing S100A4, suggest that S100A4 protein represents an important potential target for future OS therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

OS:

Osteosarcoma

shRNA:

Short hairpin RNA

ECM:

Extracellular matrix

MMP:

Metalloproteinase

TMA:

Tissue microarray

MHC:

Myosin heavy chain

qRT-PCR:

Quantitative reverse transcription-polymerase chain reaction

IHC:

Immunohistochemistry

References

  1. Kempf-Bielack B, Bielack SS, Jurgens H, Branscheid D, Berdel WE, Exner GU, et al. Osteosarcoma relapse after combined modality therapy: an analysis of unselected patients in the Cooperative Osteosarcoma Study Group (COSS). J Clin Oncol. 2005;23:559–68.

    Article  PubMed  Google Scholar 

  2. Asai T, Ueda T, Itoh K, Yoshioka K, Aoki Y, Mori S, et al. Establishment and characterization of a murine osteosarcoma cell line (LM8) with high metastatic potential to the lung. Int J Cancer. 1998;76:418–22.

    Article  PubMed  CAS  Google Scholar 

  3. Kashima T, Nakamura K, Kawaguchi J, Takanashi M, Ishida T, Aburatani H, et al. Overexpression of cadherins suppresses pulmonary metastasis of osteosarcoma in vivo. Int J Cancer. 2003;104:147–54.

    Article  PubMed  CAS  Google Scholar 

  4. Santamaria-Kisiel L, Rintala-Dempsey AC, Shaw GS. Calcium-dependent and -independent interactions of the S100 protein family. Biochem J. 2006;396:201–14.

    Article  PubMed  CAS  Google Scholar 

  5. Boye K, Maelandsmo GM. S100A4 and metastasis: a small actor playing many roles. Am J Pathol. 2010;176:528–35.

    Article  PubMed  CAS  Google Scholar 

  6. Davies BR, Barraclough R, Davies MP, Rudland PS. Production of the metastatic phenotype by DNA transfection in a rat mammary model. Cell Biol Int. 1993;17:871–9.

    Article  PubMed  CAS  Google Scholar 

  7. Davies MP, Rudland PS, Robertson L, Parry EW, Jolicoeur P, Barraclough R. Expression of the calcium-binding protein S100A4 (p9Ka) in MMTV-neu transgenic mice induces metastasis of mammary tumours. Oncogene. 1996;13:1631–7.

    PubMed  CAS  Google Scholar 

  8. Ambartsumian NS, Grigorian MS, Larsen IF, Karlstrom O, Sidenius N, Rygaard J, et al. Metastasis of mammary carcinomas in GRS/A hybrid mice transgenic for the mts1 gene. Oncogene. 1996;13:1621–30.

    PubMed  CAS  Google Scholar 

  9. Maelandsmo GM, Hovig E, Skrede M, Engebraaten O, Florenes VA, Myklebost O, et al. Reversal of the in vivo metastatic phenotype of human tumor cells by an anti-CAPL (mts1) ribozyme. Cancer Res. 1996;56:5490–8.

    PubMed  CAS  Google Scholar 

  10. Grigorian MS, Tulchinsky EM, Zain S, Ebralidze AK, Kramerov DA, Kriajevska MV, et al. The mts1 gene and control of tumor metastasis. Gene. 1993;135:229–38.

    Article  PubMed  CAS  Google Scholar 

  11. Ismail TM, Zhang S, Fernig DG, Gross S, Martin-Fernandez ML, See V, et al. Self-association of calcium-binding protein S100A4 and metastasis. J Biol Chem. 2010;285:914–22.

    Article  PubMed  CAS  Google Scholar 

  12. Ito Y, Yoshida H, Tomoda C, Uruno T, Miya A, Kobayashi K, et al. S100A4 expression is an early event of papillary carcinoma of the thyroid. Oncology. 2004;67:397–402.

    Article  PubMed  CAS  Google Scholar 

  13. Garrett SC, Varney KM, Weber DJ, Bresnick AR. S100A4, a mediator of metastasis. J Biol Chem. 2006;281:677–80.

    Article  PubMed  CAS  Google Scholar 

  14. Ma X, Yang Y, Wang Y, An G, Lv G. Small interfering RNA-directed knockdown of S100A4 decreases proliferation and invasiveness of osteosarcoma cells. Cancer Lett. 2010;28;299(2):171–81

    Google Scholar 

  15. Shi Y, Zou M, Collison K, Baitei EY, Al-Makhalafi Z, Farid NR, et al. Ribonucleic acid interference targeting S100A4 (Mts1) suppresses tumor growth and metastasis of anaplastic thyroid carcinoma in a mouse model. J Clin Endocrinol Metab. 2006;91:2373–9.

    Article  PubMed  CAS  Google Scholar 

  16. Khanna C, Wan X, Bose S, Cassaday R, Olomu O, Mendoza A, et al. The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis. Nat Med. 2004;10:182–6.

    Article  PubMed  CAS  Google Scholar 

  17. Hippo Y, Taniguchi H, Tsutsumi S, Machida N, Chong JM, Fukayama M, et al. Global gene expression analysis of gastric cancer by oligonucleotide microarrays. Cancer Res. 2002;62:233–40.

    PubMed  CAS  Google Scholar 

  18. West AG, Gaszner M, Felsenfeld G. Insulators: many functions, many mechanisms. Genes Dev. 2002;16:271–88.

    Article  PubMed  Google Scholar 

  19. Ivics Z, Hackett PB, Plasterk RH, Izsvak Z. Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell. 1997;91:501–10.

    Article  PubMed  CAS  Google Scholar 

  20. Cabezon T, Celis JE, Skibshoj I, Klingelhofer J, Grigorian M, Gromov P, et al. Expression of S100A4 by a variety of cell types present in the tumor microenvironment of human breast cancer. Int J Cancer. 2007;121:1433–44.

    Article  PubMed  CAS  Google Scholar 

  21. Shimamura T, Ito H, Shibahara J, Watanabe A, Hippo Y, Taniguchi H, et al. Overexpression of MUC13 is associated with intestinal-type gastric cancer. Cancer Sci. 2005;96:265–73.

    Article  PubMed  CAS  Google Scholar 

  22. Kwak JM, Lee HJ, Kim SH, Kim HK, Mok YJ, Park YT, et al. Expression of protein S100A4 is a predictor of recurrence in colorectal cancer. World J Gastroenterol. 2010;16:3897–904.

    Article  PubMed  CAS  Google Scholar 

  23. Psaila B, Lyden D. The metastatic niche: adapting the foreign soil. Nat Rev Cancer. 2009;9:285–93.

    Article  PubMed  CAS  Google Scholar 

  24. Zreiqat H, Howlett CR, Gronthos S, Hume D, Geczy CL. S100A8/S100A9 and their association with cartilage and bone. J Mol Histol. 2007;38:381–91.

    Article  PubMed  CAS  Google Scholar 

  25. Leonard P, Sharp T, Henderson S, Hewitt D, Pringle J, Sandison A, et al. Gene expression array profile of human osteosarcoma. Br J Cancer. 2003;89:2284–8.

    Article  PubMed  CAS  Google Scholar 

  26. Ivics Z, Li MA, Mates L, Boeke JD, Nagy A, Bradley A, et al. Transposon-mediated genome manipulation in vertebrates. Nat Methods. 2009;6:415–22.

    Article  PubMed  CAS  Google Scholar 

  27. Simons M, Wang M, McBride OW, Kawamoto S, Yamakawa K, Gdula D, et al. Human nonmuscle myosin heavy chains are encoded by two genes located on different chromosomes. Circ Res. 1991;69:530–9.

    PubMed  CAS  Google Scholar 

  28. Conti MA, Adelstein RS. Nonmuscle myosin II moves in new directions. J Cell Sci. 2008;121:11–8.

    Article  PubMed  CAS  Google Scholar 

  29. Dulyaninova NG, Malashkevich VN, Almo SC, Bresnick AR. Regulation of myosin-IIA assembly and Mts1 binding by heavy chain phosphorylation. Biochemistry. 2005;44:6867–76.

    Article  PubMed  CAS  Google Scholar 

  30. Hirao M, Sato N, Kondo T, Yonemura S, Monden M, Sasaki T, et al. Regulation mechanism of ERM (ezrin/radixin/moesin) protein/plasma membrane association: possible involvement of phosphatidylinositol turnover and Rho-dependent signaling pathway. J Cell Biol. 1996;135:37–51.

    Article  PubMed  CAS  Google Scholar 

  31. Salas S, Bartoli C, Deville JL, Gaudart J, Fina F, Calisti A, et al. Ezrin and alpha-smooth muscle actin are immunohistochemical prognostic markers in conventional osteosarcomas. Virchows Arch. 2007;451:999–1007.

    Article  PubMed  CAS  Google Scholar 

  32. Khanna C, Khan J, Nguyen P, Prehn J, Caylor J, Yeung C, et al. Metastasis-associated differences in gene expression in a murine model of osteosarcoma. Cancer Res. 2001;61:3750–9.

    PubMed  CAS  Google Scholar 

  33. Fukaya Y, Ishiguro N, Senga T, Ichigotani Y, Sohara Y, Tsutsui M, et al. A role for PI3K-Akt signaling in pulmonary metastatic nodule formation of the osteosarcoma cell line, LM8. Oncol Rep. 2005;14:847–52.

    PubMed  CAS  Google Scholar 

  34. Ren L, Hong SH, Cassavaugh J, Osborne T, Chou AJ, Kim SY, et al. The actin-cytoskeleton linker protein ezrin is regulated during osteosarcoma metastasis by PKC. Oncogene. 2009;28:792–802.

    Article  PubMed  CAS  Google Scholar 

  35. Bjornland K, Winberg JO, Odegaard OT, Hovig E, Loennechen T, Aasen AO, et al. S100A4 involvement in metastasis: deregulation of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in osteosarcoma cells transfected with an anti-S100A4 ribozyme. Cancer Res. 1999;59:4702–8.

    PubMed  CAS  Google Scholar 

  36. Mathisen B, Lindstad RI, Hansen J, El-Gewely SA, Maelandsmo GM, Hovig E, et al. S100A4 regulates membrane induced activation of matrix metalloproteinase-2 in osteosarcoma cells. Clin Exp Metastasis. 2003;20:701–11.

    Article  PubMed  CAS  Google Scholar 

  37. Wyckoff JB, Pinner SE, Gschmeissner S, Condeelis JS, Sahai E. ROCK- and myosin-dependent matrix deformation enables protease-independent tumor-cell invasion in vivo. Curr Biol. 2006;16:1515–23.

    Article  PubMed  CAS  Google Scholar 

  38. Yammani RR, Carlson CS, Bresnick AR, Loeser RF. Increase in production of matrix metalloproteinase 13 by human articular chondrocytes due to stimulation with S100A4: Role of the receptor for advanced glycation end products. Arthritis Rheum. 2006;54:2901–11.

    Article  PubMed  CAS  Google Scholar 

  39. Duarte WR, Shibata T, Takenaga K, Takahashi E, Kubota K, Ohya K, et al. S100A4: a novel negative regulator of mineralization and osteoblast differentiation. J Bone Miner Res. 2003;18:493–501.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Felsenfeld and Dr. Hackett for providing chicken HS4 insulator cores and pCMV-SB, respectively, and Mrs. Ogiwara, Ms. Yamamura, and Ms. Meguro for their technical assistance.

The work described in this report was funded by a grant (no. 16790202) from the Ministry of Education, Culture, Sports, Science & Technology to TGK and a grant from the UK Bone Cancer Research Trust .

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi G. Kashima.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 75 kb)

Table S1

Primers sets used in this study (DOC 81 kb)

Table S2

List of the highest ten genes preferentially expressed in LM8 than in Dunn by oligonucleotide arrays (DOC 137 kb)

Table S3

MMP family expression profiling by oligonucleotide arrays (DOC 143 kb)

Fig. S1

The map of pInSB(R) (JPEG 449 kb)

Fig. S2

The map of pInSB(L) (JPEG 538 kb)

Fig. S3

Construction of pInSB-Neo-shS100a4 (JPEG 489 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujiwara, M., Kashima, T.G., Kunita, A. et al. Stable knockdown of S100A4 suppresses cell migration and metastasis of osteosarcoma. Tumor Biol. 32, 611–622 (2011). https://doi.org/10.1007/s13277-011-0160-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-011-0160-y

Keywords

Navigation