Skip to main content

Advertisement

Log in

Identification of HLA-A*0201-restricted cytotoxic T lymphocyte epitope from proliferating cell nuclear antigen

  • Research Article
  • Published:
Tumor Biology

Abstract

Peptide-based immunotherapy strategies appear promising as an approach to successfully induce an antitumor immune response and prolong survival in patients with various cancers. Protein antigens and their specific epitopes are formulation targets for anti-tumor vaccines. Bioinformatical approaches to predict major histocompatibility complex binding peptides can facilitate the resource-consuming effort of T cell epitope identification. Proliferating cell nuclear antigen including Ki-67 and PCNA, associated with the proliferation process of the cell, seems to be an attractive new target for tumor-specific immunotherapy. In this study, we predicted seven HLA-A*0201-restricted CTL candidate epitope of Ki-67 and eight epitope of PCNA by computer algorithm SYFPEITHI, BIMAS, and IEDB_ANN. Subsequently, biological functions of these peptides were tested by experiments in vitro. We found Ki-67(280–288) (LQGETQLLV) had the strongest binding-affinity with HLA-A*0201. Further study revealed that Ki-67(280–288) increased the frequency of IFN-γ-producing T cells compared to a negative peptide. Because Ki-67 was broadly expressed in most advanced malignant tumors, indicating a potential anti-tumor application in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig 2
Fig. 3

Similar content being viewed by others

References

  1. Van der Bruggen P, Chomez P, et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science. 1991;254:1643–7.

    Article  PubMed  Google Scholar 

  2. Purcell AW, McCluskey J, Rossjohn J. More than one reason to rethink the use of peptides in vaccine design. Nat Rev Drug Discov. 2007;6:404–14.

    Article  CAS  PubMed  Google Scholar 

  3. Van der Burg SH, Bijker MS, Welters MJ, Offringa R, Melief CJ. Improved peptide vaccine strategies,creating synthetic artifical infections to maximize immune efficacy. Adv Drug Deliv Rev. 2006;127:159–69.

    Google Scholar 

  4. Noguchi M, Itoh K, Suekane S, Yao A, Suetsugu N, Katagiri K, et al. Phase I trial of patient-oriented vaccination in HLA-A*0201-positive patients with metastatic hormonerefractory prostate cancer. Cancer Sci. 2004;95:77–84.

    Article  CAS  PubMed  Google Scholar 

  5. Wobser M, Keikavoussi P, Kunzmann V, Weininger M, Andersen MH, Becker JC. Complete remission of liver metastasis of pancreyatic cancer under vaccination with a HLA-A*0201 restricted peptide derived from the universal tumor antigen survivin. Cancer Immunol Immunother. 2006;55:1294–8.

    Article  CAS  PubMed  Google Scholar 

  6. Firbas C, Jilma B, Tauber E. Immunogenicity and safety of a novel therapeutic hepatitis C virus (HCV) peptide vaccine: a randomized, placebo controlled trial for dose optimization in 128 healthy subjects. Vaccine. 2006;24:4343–53.

    Article  CAS  PubMed  Google Scholar 

  7. Pietersz GA, Pouniotis DS, Apostolopoalos V. Design of peptide-based vaccines for cancer. Curr Med Chem. 2006;13:1591–607.

    Article  CAS  PubMed  Google Scholar 

  8. Yang HB, Hsu PI, Chan SH, Lee IC, Shin IS, Chow NH. Growth kinetics of colorectal adenoma-carcinoma sequence: an immunohistochemical study of proliferation cell nuclear antigen expression. Hum Pathol. 1996;10:1071–6.

    Article  Google Scholar 

  9. Bai XZ, Masters JR, O’Donoghue N, Kirby R, Pan LX, Young M, et al. Prognostic markers in clinically localised prostate cancer. Int J Oncol. 1999;14:785–91.

    CAS  PubMed  Google Scholar 

  10. BIMAS [http://www-bimas.cit.nih.gov/molbio/hla_bind/]

  11. SYFPEITHI [http://www.syfpeithi.de/Scripts/MHCServer.dll/EpitopePrediction.htm], Accessed July 28, 2010.

  12. IEDB (ANN)[http://tools.immuneepitope.org/analyze/html/mhc_binding.html], Accessed July 28, 2010.

  13. Nijman HW, Houbiers JG, Vierboom MP, van der Burg SH, Drijfhout JW, D’Amaro J, et al. IdentiWcation of peptide sequences that potentially trigger HLA-A*0201.1-restricted cytotoxic T lymphocytes. Eur J Immunol. 1993;23:1215–9.

    Article  CAS  PubMed  Google Scholar 

  14. Andersen MH, Pedersen LO, Becker JC, Straten P. Identification of a cytotoxic T lymphocyte response to the apoptosis inhibitor protein survivin in cancer patients. Cancer Res. 2000;61:869–72.

    Google Scholar 

  15. van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde B, et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science. 1991;254:1643–7.

    Article  PubMed  Google Scholar 

  16. Brusic V, Bajic VB, Petrovsky N. Computational methods for prediction of T-cell epitopes—a framework for modelling, testing, and applications. Methods. 2004;34:436–43.

    Article  CAS  PubMed  Google Scholar 

  17. De Groot AS, Moise L. Prediction of immunogenicity for therapeutic proteins: state of the art. Curr Opin Drug Discov Dev. 2007;10:332–40.

    Google Scholar 

  18. Claus Lundegaard, Kasper Lamberth, Mikkel Harndahl, Søren Buus, Ole Lund1and Morten Nielsen. NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8–11. Nucleic Acids Res. 2008;36:509–12.

  19. Lim JS, Kim S, Lee HG, Lee KY, Kown TJ, Kim K. Selection of peptides that bind to the HLA-A*0201.1 molecule by molecular modelling. Mol Immunol. 1996;33:221–30.

    Article  CAS  PubMed  Google Scholar 

  20. Lin HH, Ray S, Tongchusak S, Reinherz EL, Brusic V. Evaluation of MHC class I peptide binding prediction servers: applications for vaccine research. BMC Immunol. 2008;9:8.

    Article  PubMed  Google Scholar 

  21. Yu K, Petrovsky N, Schonbach C, Koh JY, Brusic V. Methods for prediction of peptide binding to MHC molecules: a comparative study. Mol Med (Camb, Mass). 2002;8:137–48.

    CAS  Google Scholar 

  22. Trost B, Bickis M, Kusalik A. Strength in numbers: achieving greater accuracy in MHC-I binding prediction by combining the results from multiple prediction tools. Immunome Res. 2007;3:5.

    Article  PubMed  Google Scholar 

  23. Apostolopoulos V. Peptide-based vaccines for cancer: are we choosing the right peptides? Expert Rev Vaccines. 2009;8:259–60.

    Article  PubMed  Google Scholar 

  24. Buteau C, Markovic SN, Celis E. Challenges in the development of effective peptide vaccines for cancer. Mayo Clin Proc. 2002;77:339–49.

    Article  CAS  PubMed  Google Scholar 

  25. Shreya Kanodia W, Kast M. peptide-based vaccines for cancer: realizing their potential. Expert Rev Vaccines. 2008;7:1533–45.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This project is supported by grants from Health Departmental of Jiangsu province (No. Z200903), National Science Foundation of China (No.30972976) and the Program for New Century Excellent Talents in University (NCET-08-0700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Nian Zheng.

Additional information

Wei Xu and Hui-Zhong Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, W., Li, HZ., Liu, JJ. et al. Identification of HLA-A*0201-restricted cytotoxic T lymphocyte epitope from proliferating cell nuclear antigen. Tumor Biol. 32, 63–69 (2011). https://doi.org/10.1007/s13277-010-0098-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-010-0098-5

Keywords

Navigation