Skip to main content

Advertisement

Log in

Transforming growth factor-β1 29T>C genetic polymorphism is associated with lymph node metastasis in patients with adenocarcinoma of the lung

  • Research Article
  • Published:
Tumor Biology

Abstract

Transforming growth factor-β1 (TGF-β1) is known to suppress antitumor immune responses, and its overexpression is closely associated with a poor prognosis in patients with malignant tumors. Moreover, TGF-β1 29T>C genetic polymorphism is known to affect survival among breast cancer patients. The relationship between TGF-β1 polymorphism and the clinicopathological characteristics of non-small cell lung cancer remains unknown, however. The study participants were 91 Japanese patients who underwent curative surgery for adenocarcinoma of the lung. DNA was extracted from tumor samples, and TGF-β1 29T>C genetic polymorphism was investigated using the polymerase chain reaction-restriction fragment length polymorphism method, after which genotype was correlated with clinicopathological factors. There were no differences between the TGF-β1 29TT and 29TC+CC genotypes with respect to age, sex, histological differentiation grade, tumor size, or pathological stage. However, the frequency of nodal metastasis was significantly greater in the TGF-β1 29TC+CC group than the TGF-β1 29TT group. Multivariate logistic regression analysis of lymph node metastasis revealed that male, tumor size, differentiation grade, and TGF-β1 29TC+CC genotypes (hazard ratio, 5.26; 95% CI, 1.03–40.0; P = 0.045) are factors associated with a significantly greater likelihood of developing lymph node metastasis. TGF-β1 29T>C genetic polymorphism is an independent factor associated with lymph node metastasis in adenocarcinoma of the lung.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Conrad CT, Ernst NR, Dummer W, Brocker EB, Becker JC. Differential expression of transforming growth factor beta 1 and interleukin 10 in progressing and regressing areas of primary melanoma. J Exp Clin Cancer Res. 1999;18:225–32.

    CAS  PubMed  Google Scholar 

  2. Amoils KD, Bezwoda WR. TGF-beta 1 mRNA expression in clinical breast cancer and its relationship to ER mRNA expression. Breast Cancer Res Treat. 1997;42:95–101.

    Article  CAS  PubMed  Google Scholar 

  3. Asselin-Paturel C, Echchakir H, Carayol G, Gay F, Opolon P, Grunenwald D, et al. Quantitative analysis of Th1, Th2 and TGF-beta1 cytokine expression in tumor, TIL and PBL of non-small cell lung cancer patients. Int J Cancer. 1998;77:7–12.

    Article  CAS  PubMed  Google Scholar 

  4. Yang L, Carbone DP. Tumor-host immune interactions and dendritic cell dysfunction. Adv Cancer Res. 2004;92:13–27.

    Article  CAS  PubMed  Google Scholar 

  5. Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, Nadaf S, et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med. 1996;2:1096–103.

    Article  CAS  PubMed  Google Scholar 

  6. Saito H, Tsujitani S, Oka S, Kondo A, Ikeguchi M, Maeta M, et al. An elevated serum level of transforming growth factor-beta 1 (TGF-beta 1) significantly correlated with lymph node metastasis and poor prognosis in patients with gastric carcinoma. Anticancer Res. 2000;20:4489–93.

    CAS  PubMed  Google Scholar 

  7. Ghellal A, Li C, Hayes M, Byrne G, Bundred N, Kumar S. Prognostic significance of TGF beta 1 and TGF beta 3 in human breast carcinoma. Anticancer Res. 2000;20:4413–8.

    CAS  PubMed  Google Scholar 

  8. Hasegawa Y, Takanashi S, Kanehira Y, Tsushima T, Imai T, Okumura K. Transforming growth factor-beta1 level correlates with angiogenesis, tumor progression, and prognosis in patients with nonsmall cell lung carcinoma. Cancer. 2001;91:964–71.

    Article  CAS  PubMed  Google Scholar 

  9. Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor beta in human disease. N Engl J Med. 2000;342:1350–8.

    Article  CAS  PubMed  Google Scholar 

  10. Ito M, Minamiya Y, Kawai H, Saito S, Saito H, Nakagawa T, et al. Tumor-derived TGFbeta-1 induces dendritic cell apoptosis in the sentinel lymph node. J Immunol. 2006;176:5637–43.

    CAS  PubMed  Google Scholar 

  11. Fujita T, Teramoto K, Ozaki Y, Hanaoka J, Tezuka N, Itoh Y, et al. Inhibition of transforming growth factor-β–mediated immunosuppression in tumor-draining lymph nodes augments antitumor responses by various immunologic cell types. Cancer Res. 2009;69:5142–50.

    Article  CAS  PubMed  Google Scholar 

  12. Leivonen SK, Kähäri VM. Transforming growth factor-beta signaling in cancer invasion and metastasis. Int J Cancer. 2007;121:2119–24.

    Article  CAS  PubMed  Google Scholar 

  13. Flanders KC, Wakefield LM. Transforming growth factor-(beta)s and mammary gland involution; functional roles and implications for cancer progression. J Mammary Gland Biol Neoplasia. 2009;14:131–44.

    Article  PubMed  Google Scholar 

  14. Derynck R, Rhee L, Chen EY, Van Tilburg A. Intron-exon structure of the human transforming growth factor-ß precursor gene. Nucleic Acids Res. 1987;15:3188–9.

    Article  PubMed  Google Scholar 

  15. Cambien F, Ricard S, Troesch A, Mallet C, Générénaz L, Evans A, et al. Polymorphisms of the transforming growth factor-ß1 gene in relation to myocardial infarction and blood pressure. Hypertension. 1996;28:881–7.

    CAS  PubMed  Google Scholar 

  16. Langdahl BL, Knudsen JY, Jensen HK, Gregersen N, Eriksen EF. A sequence variation: 713–8delC in the transforming growth factor-beta 1 gene has higher prevalence in osteoporotic women than in normal women and is associated with very low bone mass in osteoporotic women and increased bone turnover in both osteoporotic and normal women. Bone. 1997;20:289–94.

    Article  CAS  PubMed  Google Scholar 

  17. Syrris P, Carter ND, Metcalfe JC, Kemp PR, Grainger DJ, Kaski JC, et al. Transforming growth factor-ß1 gene polymorphisms and coronary artery disease. Clin Sci. 1998;95:659–67.

    Article  CAS  PubMed  Google Scholar 

  18. Grainger DJ, Heathcote K, Chiano M, Snieder H, Kemp PR, Metcalfe JC, et al. Genetic control of the circulating concentration of transforming growth factor type ß1. Hum Mol Genet. 1999;8:93–7.

    Article  CAS  PubMed  Google Scholar 

  19. Dunning AM, Ellis PD, McBride S, Kirschenlohr HL, Healey CS, Kemp PR, et al. A transforming growth factorbeta1 signal peptide variant increases secretion in vitro and is associated with increased incidence of invasive breast cancer. Cancer Res. 2003;63:2610–5.

    CAS  PubMed  Google Scholar 

  20. Shu XO, Gao YT, Cai Q, Pierce L, Cai H, Ruan ZX, et al. Genetic polymorphisms in the TGF-beta 1 gene and breast cancer survival: a report from the Shanghai Breast Cancer Study. Cancer Res. 2004;64:836–9.

    Article  CAS  PubMed  Google Scholar 

  21. Yokota M, Ichihara S, Lin TL, Nakashima N, Yamada Y. Association of a T29–>C polymorphism of the transforming growth factor-beta1 gene with genetic susceptibility to myocardial infarction in Japanese. Circulation. 2000;101:2783–7.

    CAS  PubMed  Google Scholar 

  22. Sobin L, Wittekind Ch, editors. TNM classification of malignant tumours. 6th ed. New York: Wiley-Liss; 2002. p. 99–103.

    Google Scholar 

  23. Padua D, Massagué J. Roles of TGFbeta in metastasis. Cell Res. 2009;19:89–102.

    Article  CAS  PubMed  Google Scholar 

  24. Harrington KJ, Syrigos KN. The role of E-cadherin-catenin complex: more than an intercellular glue? Ann Surg Oncol. 2000;7:783–8.

    Article  CAS  PubMed  Google Scholar 

  25. Suzuki K, Nagai K, Yoshida J, Nishimura M, Nishiwaki Y. Predictors of lymph node and intrapulmonary metastasis in clinical stage IA non-small cell lung carcinoma. Ann Thorac Surg. 2001;72:352–6.

    Article  CAS  PubMed  Google Scholar 

  26. Nozawa N, Hashimoto S, Nakashima Y, Matsuo Y, Koga T, Sugio K, et al. Immunohistochemical alpha- and beta-catenin and E-cadherin expression and their clinicopathological significance in human lung adenocarcinoma. Pathol Res Pract. 2006;202:639–50.

    Article  CAS  PubMed  Google Scholar 

  27. Bremnes RM, Veve R, Gabrielson E, Hirsch FR, Baron A, Bemis L, et al. High-throughput tissue microarray analysis used to evaluate biology and prognostic significance of the E-cadherin pathway in non-small-cell lung cancer. J Clin Oncol. 2002;20:2417–28.

    Article  CAS  PubMed  Google Scholar 

  28. Kalogeraki A, Bouros D, Zoras O, Karabekios S, Chalkiadakis G, Stathopoulos E, et al. E-cadherin expression on fine-needle aspiration biopsies in primary lung adenocarcinomas is related to tumor differentiation and invasion. Anticancer Res. 2003;23:3367–71.

    CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Minamiya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minamiya, Y., Miura, M., Hinai, Y. et al. Transforming growth factor-β1 29T>C genetic polymorphism is associated with lymph node metastasis in patients with adenocarcinoma of the lung. Tumor Biol. 31, 437–441 (2010). https://doi.org/10.1007/s13277-010-0052-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-010-0052-6

Keywords

Navigation