Skip to main content
Log in

Exosomes as diagnostic biomarkers in cancer

  • Review Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Purpose of review

Exosomes are extracellular vesicles of 30-150 nm diameter, secreted from nearly all mammalian cells through fusion of multivesicular bodies with the plasma membrane. Owing to the differences in the properties of exosomes and microvesicles released through outward budding of the plasma membrane, exosomes have recently received increasing interest. This review discusses the current status of exosome research for diagnostic biomarkers in cancers. The scope of information that can be acquired from exosomal contents potentially include tumour progression, detection of metastasis, and possible chemotherapeutic resistance, which can facilitate clinical decisions in precision medicine.

Recent findings

Exosomes protect molecular components including miRNAs and proteins from enzymatic degradation during circulation and serve as stable cargo for them. miRNAs transferred by exosomes have emerged as novel regulators of cellular function in various types of cancers. In addition, exosomes contain numerous plasma membrane and cytosolic proteins and exosome- specific proteins. However, many of the experiments are limited in their methods for the isolation and purification of exosomes. Nevertheless, the physiological and pathological significance of the role of exosomes in miRNA- or protein-based cell-to-cell or tissue-to-tissue communication has been highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Munson, P. & Shukla, A. Exosomes: potential in cancer diagnosis and therapy. Medicines (Basel) 2, 310–327 (2015).

    Article  CAS  Google Scholar 

  2. Lin, J. et al. Exosomes: novel biomarkers for clinical diagnosis. Sci World J 2015, 657086 (2015).

    Google Scholar 

  3. Soung, Y. W., Ford, S., Zhang, V. & Chung, J. Exosomes in cancer diagnostics. Cancers 9, 8 (2017).

    Article  PubMed Central  Google Scholar 

  4. Seigneuric, R., Cordonnier, M., Gobbo, J., Marcion, G. & Garrido, C. Tumor exosomes: potential biomarkers and targets in cancer. J Clin Cell Immunol 7, 6 (2016).

    Google Scholar 

  5. Properzi, F., Logozzi, M. & Fais, S. Exosomes: the future of biomarkers in medicine. Biomark Med 7, 769–778 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Street, J. M. et al. Exosomal transmission of functional aquaporin 2 in kidney cortical collecting duct cells. J Physiol 589, 6119–6127 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pitt, J. M. et al. Dendritic cell-derived exosomes for cancer therapy. J Clin Invest 126, 1224–1232 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tauro, B. J. et al. Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods 56, 293–304 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Li, P., Kaslan, M., Lee, S. H., Yao, J. & Gao, Z. Progress in exosome isolation techniques. Theranostics 7, 789–804 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Iwai, K., Minamisawa, T., Suga, K., Yajima, Y. & Shiba, K. Isolation of human salivary extracellular vesicles by iodixanol density gradient ultracentrifugation and their characterizations. J Extracell Vesicles 5, 30829 (2016).

    Article  PubMed  Google Scholar 

  11. Szatanek, R., Baran, J., Siedlar, M. & Baj-Krzyworzeka, M. Isolation of extracellular vesicles: Determining the correct approach. Int J Mol Med 36, 11–17 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nordin, J. Z. et al. Ultrafiltration with size-exclusion liquid chromatography for high yield isolation of extracellular vesicles preserving intact biophysical and functional properties. Nanomedicine 11, 879–883 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Thind, A. & Wilson, C. Exosomal miRNAs as cancer biomarkers and therapeutic targets. J Extracell Vesicles 5, 31292 (2016).

    Article  PubMed  Google Scholar 

  14. Brinton, L. T., Sloane, H. S., Kester, M. & Kelly, K. A. Formation and role of exosomes in cancer. Cell Mol Life Sci 72, 659–671 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Li, X. & Wang, X. The emerging roles and therapeutic potential of exosomes in epithelial ovarian cancer. Mol Cancer 16, 92 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Milane, L., Singh, A., Mattheolabakis, G., Suresh M & Amiji, M. M. Exosome mediated communication within the tumor microenvironment. J Control Release 219, 278–294 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, L. et al. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis out growth. Nature 527, 100–104 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Challagundla, K. B. et al. Exosome-mediated transfer of microRNAs within the tumor microenvironment and neuroblastoma resistance to chemotherapy. J Natl Cancer Inst 107, djv135 (2015).

  19. Ge, Q. et al. miRNA in plasma exosome is stable under different storage conditions. Molecules 19, 1568–1575 (2014).

    Article  PubMed  Google Scholar 

  20. Zhao, L. et al. Isolation and identification of miRNAs in exosomes derived from serum of colon cancer patients. J Cancer 8, 1145–1152 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Li, J. et al. Exosome-derived microRNAs contribute to prostate cancer chemoresistance. Int J Oncol 49, 838–846 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Santos, J. C., Ribeiro, M. L., Sarian, L. O., Ortega, M. M. & Derchain, S. F. Exosomes-mediate microRNAs transfer in breast cancer chemoresistance regulation. Am J Cancer Res 6, 2129–2139 (2016).

    PubMed  PubMed Central  Google Scholar 

  23. Falcone, G., Felsani, A. & D’Agnano, I. Signaling by exosomal microRNAs in cancer. J Exp Clinic Cancer Res 34, 32 (2015).

    Article  Google Scholar 

  24. Schillaci, O. et al. Exosomes from metastatic cancer cells transfer amoeboid phenotype to non-metastatic cells and increase endothelial permeability: their emerging role in tumor heterogeneity. Sci Rep 7, 4711 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Matsumura, T. et al. Exosomal microRNA in serum is a novel biomarker of recurrence in human colorectal cancer. Br J Cancer 113, 275–281 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ogata-Kawata, H. et al. Circulating exosomal microRNAs as biomarkers of colon cancer. PLoS ONE 9, e92921 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Teng, Y. et al. MVP mediated exosomal sorting of miR-193a promotes colon cancer progression. Nat Commun 8, 14448 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bigagli, E., Luceri, C., Guasti, D. & Cinci, L. Exosomes secreted from human colon cancer cells influence the adhesion of neighboring metastatic cells: role of microRNA-210. Cancer Biol Ther 17, 1062–1069 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  29. Camacho, L., Guerrero, P. & Marchetti, D. MicroRNA and protein profiling of brain metastasis competent cell-derived exosomes. PLoS One 8, e73790 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ye, S. B. et al. Tumor-derived exosomes promote tumor progression and T-cell dysfunction through the regulation of enriched exosomal microRNAs in human nasopharyngeal carcinoma. Oncotarget 5, 5439–5452 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Schmidt, B., Rehbein, G. & Fleischhacker, M. Liquid profiling in lung cancer -quantification of extracellular miRNAs in bronchial lavage. Adv Exp Med Biol 924, 33–37 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Dejima, H., Iinuma, H., Kanaoka, R., Matsutani, N. & Kawamura, M. Exosomal microRNA in plasma as a non-invasive biomarker for the recurrence of non-small cell lung cancer. Oncol Lett 13, 1256–1263 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Warnecke-Eberz, U., Chon, S. H., Hölscher, A. H., Drebber, U. & Bollschweiler, E. Exosomal onco-miRs from serum of patients with adenocarcinoma of the esophagus: comparison of miRNA profiles of exosomes and matching tumor. Tumour Biol 36, 4643–4653 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Alhasan, A. H. et al. Circulating microRNA signature for the diagnosis of very high-risk prostate cancer. Proc Natl Acad Sci USA 113, 10655–10660 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Taylor, D. D. & Gercel-Taylor, C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 110, 13–21 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Uratani, R. et al. Diagnostic potential of cell-free and exosomal microRNAs in the identification of patients with high-risk colorectal adenomas. PLoS ONE 11, e0160722 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Shi, J. Considering exosomal miR-21 as a biomarker for cancer. J Clinic Med 5, 42 (2016).

    Article  Google Scholar 

  38. Tanaka, Y. et al. Clinical impact of serum exosomal microRNA-21 as a clinical biomarker in human esophageal squamous cell carcinoma. Cancer 119, 1159–1167 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Zhou, X. et al. Prognostic value of miR-21 in various cancers: an updating meta-analysis. PLoS One 9, e102413 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Fu, F., Jiang, W., Zhou, L. & Chen, Z. Circulating exosomal miR-17-5p and miR-92a-3p predict pathologic stage and grade of colorectal cancer. Transl Oncol 11, 221–232 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Li, A. et al. Exosomal proteins as potential markers of tumor diagnosis. J Hematol Oncol 10, 175 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sharma, S. et al. Tumor-derived exosomes in ovarian cancer -liquid biopsies for early detection and realtime monitoring of cancer progression. Oncotarget 8, 104687–104703 (2017).

    PubMed  PubMed Central  Google Scholar 

  43. Khan, S. et al. Plasma-derived exosomal survivin, a plausible biomarker for early detection of prostate cancer. PLoS ONE 7, e46737 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Smalley, D. M., Sheman, N. E., Nelson, K. & Theodorescu, D. Isolation and identification of potential urinary microparticle biomarkers of bladder cancer. J Proteome Res 7, 2088–2096 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Rupp, A. K. et al. Loss of EpCAM expression in breast cancer derived serum exosomes: Role of proteolytic cleavage. Gynecol Oncol 122, 437–446 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Sandfeld-Paulsen, B. et al. Exosomal proteins as prognostic biomarkers in non-small cell lung cancer. Mol Ontol 10, 1595–1602 (2016).

    CAS  Google Scholar 

  47. Melo, S. A. et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 523, 177–182 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Peinado, H. et al. Melanoma exosomes educate bone marrow progenitor cells toward a prometastatic phenotype through MET. Nat Med 18, 883–891 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Izquierdo-Useros, N., Puertas, M. C., Borràs, F. E., Blanco, J. & Martinez-Picado, J. Exosomes and retroviruses: the chicken or the egg? Cell Microbiol 13, 10–17 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Li, W. et al. Role of exosomal proteins in cancer diagnosis. Mol Cancer 16, 145 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Chen, C. L. et al. Comparative and targeted proteomic analyses of urinary microparticles from bladder cancer and hernia patients. J Proteome Res 11, 5611–5629 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Moon, P. G. et al. Identification of developmental endothelial locus-1 on circulating extracellular vesicles as a novel biomarker for early breast cancer detection. Clin Cancer Res 22, 1757–1766 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Moon, P. G. et al. Fibronectin on circulating extracellular vesicles as a liquid biopsy to detect breast cancer. Oncotarget 7, 40189–40199 (2016).

    PubMed  PubMed Central  Google Scholar 

  54. Khan, S. et al. Early diagnostic value of survivin and its alternative splice variants in breast cancer. BMC Cancer 14, 176 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Chen, I. H. et al. Phosphoproteins in extracellular vesicles as candidate markers for breast cancer. Proc Natl Acad Sci U S A 114, 3175–3180 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fang, S. et al. Clinical application of a microfluidic chip for immunocapture and quantification of circulating exosomes to assist breast cancer diagnosis and molecular classification. PLoS One 12, e0175050 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Toth, B. et al. Circulating microparticles in breast cancer patients: a comparative analysis with established biomarkers. Anticancer Res 28, 1107–1112 (2008).

    CAS  PubMed  Google Scholar 

  58. Arbelaiz, A. et al. Serum extracellular vesicles contain protein biomarkers for primary sclerosing cholangitis and cholangiocarcinoma. Hepatology 66, 1125–1143 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Yoshioka, Y. et al. Ultra-sensitive liquid biopsy of circulating extracellular vesicles using ExoScreen. Nat Commun 5, 3591 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Li, J. et al. GPC1 exosome and its regulatory miRNAs are specific markers for the detection and target therapy of colorectal cancer. J Cell Mol Med 21, 838–847 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yokoyama, S. et al. Clinical implications of carcinoembryonic antigen distribution in serum exosomal fraction -measurement by ELISA. PLoS One 12, e0183337 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Skog, J. et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10, 1470–1476 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Shao, H. et al. Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy. Nat Med 18, 1835–1840 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sandfeld-Paulsen, B. et al. Exosomal proteins as diagnostic biomarkers in lung cancer. J Thorac Oncol 11, 1701–1710 (2016).

    Article  PubMed  Google Scholar 

  65. Jakobsen, K. R. et al. Exosomal proteins as potential diagnostic markers in advanced non-small cell lung carcinoma. J Extracell Vesicles 4, 26659 (2015).

    Article  PubMed  Google Scholar 

  66. Li, Y., Zhang, Y., Qiu, F. & Qiu, Z. Proteomic identification of exosomal LRG1: a potential urinary biomarker for detecting NSCLC. Electrophoresis 32, 1976–1983 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Yamashita, T. et al. Epidermal growth factor receptor localized to exosome membranes as a possible biomarker for lung cancer diagnosis. Pharmazie 68, 969–973 (2013).

    CAS  PubMed  Google Scholar 

  68. Reclusa, P. et al. Exosomes as diagnostic and predictive biomarkers in lung cancer. J Thorac Dis 9(Suppl. 13), S1373–S1382 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Wang, L. Z. et al. Exosomal protein FAM3C as a potential novel biomarker for non-small cell lung cancer. J Clin Oncol 32(Suppl. e22162) (2014).

  70. Logozzi, M. et al. High levels of exosomes expressing CD63 and caveolin-1 in plasma of melanoma patients. PLoS ONE 4, e5219 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Revenfeld, A. L. et al. Diagnostic and prognostic potential of extracellular vesicles in peripheral blood. Clin Ther 36, 830–846 (2014).

    Article  PubMed  Google Scholar 

  72. Keryer-Bibens, C. et al. Exosomes released by EBV-infected nasopharyngeal carcinoma cells convey the viral latent membrane protein 1 and the immunomodulatory protein galectin 9. BMC Cancer 6, 283 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Szajnik, M. et al. Exosomes in plasma of patients with ovarian carcinoma: potential biomarkers of tumor progression and response to therapy. Gynecol Obstet (Sunnyvale) Supply 4, 3 (2013).

    Google Scholar 

  74. Zhao, Z., Yang, Y., Zeng, Y. & He, M. A microfluidic ExoSearch chip for multiplexed exosome detection towards blood-based ovarian cancer diagnosis. Lab Chip 16, 489–496 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Li, J. et al. Claudin-containing exosomes in the peripheral circulation of women with ovarian cancer. BMC Cancer 9, 244 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Liang, B. et al. Characterization and proteomic analysis of ovarian cancer-derived exosomes. J Proteomics 80, 171–182 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Shender, V. O. et al. Proteome-metabolome profiling of ovarian cancer ascites reveals novel components involved in intercellular communication. Mol Cell Proteomics 13, 3558–3571 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Im, H. et al. Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat Biotechnol 32, 488–493 (2014).

    Article  Google Scholar 

  79. Runz, S. et al. Malignant ascites-derived exosomes of ovarian carcinoma patients contain CD24 and EpCAM. Gynecol Oncol 107, 563–571 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Carbotti, G. et al. Activated leukocyte cell adhesion molecule soluble form: a potential biomarker of epithelial ovarian cancer is increased in type II tumors. Int J Cancer 132, 2597–2605 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Taylor, D. D., Gercel-Taylor, C. & Parker, L. P. Patient-derived tumor-reactive antibodies as diagnostic markers for ovarian cancer. Gynecol Oncol 115, 112–120 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yi, H. et al. Exosomes mediated pentose phosphate pathway in ovarian cancer metastasis: a proteomics analysis. Int J Clin Exp Pathol 8, 15719–15728 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Gomes, J. et al. Extracellular vesicles from ovarian carcinoma cells display specific glycosignatures. Biomolecules 5, 1741–1761 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lea, J. et al. Detection of phosphatidylserine-positive exosomes as a diagnostic marker for ovarian malignancies: a proof of concept study. Oncotarget 8, 14395–14407 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Escrevente, C. et al. Sialoglycoproteins and N-glycans from secreted exosomes of ovarian carcinoma cells. PLoS ONE 8, e78631 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Keller, S. et al. Systemic presence and tumor-growth promoting effect of ovarian carcinoma released exosomes. Cancer Lett 278, 73–81 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Herreros-Villanueva, M. & Bujanda, L. Glypican-1 in exosomes as biomarker for early detection of pancreatic cancer. Ann Transl Med 4, 64 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Costa-Silva, B. et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol 17, 816–826 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Nilsson, J. et al. Prostate cancer-derived urine exosomes: A novel approach to biomarkers for prostate cancer. Br J Cancer 100, 1603–1607 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Logozzi, M. et al. Increased PSA expression on prostate cancer exosomes in in vitro condition and in cancer patients. Cancer Lett 403, 318–329 (2017).

    Article  CAS  PubMed  Google Scholar 

  91. Kawakami, K. et al. Gamma-glutamyltransferase activity in exosomes as a potential marker for prostate cancer. BMC Cancer 17, 316 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Gamez-Valero, A., Lozano-Ramos, S. I., Bancu, I., Lauzurica-Valdemoros, R. & Borras, F. E. Urinary extracellular vesicles as source of biomarkers in kidney diseases. Front Immunol 6, 6 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Raimondo, F. et al. Differential protein profiling of renal cell carcinoma urinary exosomes. Mol BioSyst 9, 1220–1233 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Baran, J. et al. Circulating tumour-derived microvesicles in plasma of gastric cancer patients. Cancer Immunol Immunother 59, 841–850 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Belov, L. et al. Extensive surface protein profiles of extracellular vesicles from cancer cells may provide diagnostic signatures from blood samples. J Extracell Vesicles 5, 25355 (2016).

    Article  PubMed  Google Scholar 

  96. Franzen, C. A. et al. Urinary exosomes: The potential for biomarker utility, intercellular signaling and therapeutics in urological malignancy. J Urol 195, 1331–1339 (2016).

    Article  CAS  PubMed  Google Scholar 

  97. Suh, N., Subramanyam, D. & Lee, M. Y. Molecular signatures of secretomes from mesenchymal stem cells: therapeutic benefits. Mol Cell Toxicol 13, 133–141 (2017).

    Article  CAS  Google Scholar 

  98. Wang, J., Zheng, Y. & Zhao, M. Exosome-based cancer therapy: Implication for targeting cancer stem cells. Front Pharmacol 7, 533 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhang, Y. et al. Exosomes derived from IL-12-anchored renal cancer cells increase induction of specific antitumor response in vitro: a novel vaccine for renal cell carcinoma. Int J Oncol 36, 133–140 (2010).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eunjoo Kim or Mi Young Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, JH., Kim, E. & Lee, M.Y. Exosomes as diagnostic biomarkers in cancer. Mol. Cell. Toxicol. 14, 113–122 (2018). https://doi.org/10.1007/s13273-018-0014-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-018-0014-4

Keywords

Navigation