Skip to main content
Log in

Gene expression profiling of human alveolar epithelial cells (A549 cells) exposed to atmospheric particulate matter 2.5 (PM2.5) collected from Seoul, Korea

  • Original Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Many epidemiological and in vitro studies have shown that particulate matter 2.5 (PM2.5) is associated with adverse health effects in humans, especially respiratory morbidity and mortality1–3. While the mechanisms for these effects have been vigorously investigated for many years, they still remain uncertain. In previous studies, we collected PM2.5 samples in Seoul, Korea, where pollution results from a high level of automobile traffic, and analyzed the chemical composition of PM2.5. In the present study, we used gene expression profiling and gene ontology (GO) analysis to identify the gene expression changes in A549 human alveolar epithelial cells induced by exposure to water and organic extracts of PM2.5 (W-PM2.5 and O-PM2.5) in order to evaluate the adverse health effects of PM2.5. Transcriptomic profiling indicates that the O-PM2.5 exposure group was more sensitive in gene alterations than the W-PM2.5 exposure group. Through analysis of gene expression profiles, we identified 149 W-PM2.5-specific genes and 516 O-PM2.5-specific genes, as well as 173 commonly expressed genes in both the W-PM2.5 and O-PM2.5 exposure groups. After gene ontology (GO) analysis on the O-PM2.5-specific genes, we determined several key pathways that are known to be related to increasing pulmonary toxicity, such as immune response, regulation of inflammatory response, metabolism of xenobiotics by cytochrome P450, and retinol metabolism. However, we did not find the pulmonary toxicity-related pathways through GO analysis on the W-PM2.5-specific genes. In addition, 173 commonly expressed genes are involved in tyrosine catabolic process, retinol metabolism pathway, and steroid hormone biosynthesis — all of which are known to induce adverse health effects. In conclusion, this report describes changes in gene expression profiles in an in vitro respiratory system in response to exposure to PM2.5 water and organic extracts and relates these gene expression changes to pulmonary toxicity related pathways. This experiment adds to the understanding of how cells respond to PM2.5 exposure through transcriptional regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, F. F., Zheng, C. J. & Guo, X. B. Effect of PM2.5 collected during the dust and non-dust periods on the viability and gap junctional intercellular communication in human lung fibroblasts. Wei Sheng Yan Jiu 35:26–30 (2006).

    PubMed  Google Scholar 

  2. Diaz, R. V. & Rosa Dominguez, E. Health risk by inhalation of PM2.5 in the metropolitan zone of the City of Mexico. Ecotoxicol Environ Saf 72:866–871 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Fang, W., Yang, Y. & Xu, Z. PM10 and PM2.5 and health risk assessment for heavy metals in a typical factory for cathode ray tube television recycling. Environ Sci Technol 47:12469–12476 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Gualtieri, M. et al. Differences in cytotoxicity versus pro-inflammatory potency of different PM fractions in human epithelial lung cells. Toxicol In Vitro 24:29–39 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Watterson, T. L., Hamilton, B., Martin, R. S. & Coulombe, R. A., Jr. Urban particulate matter activates Akt in human lung cells. Arch Toxicol 86:121–135 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Akhtar, U. S. et al. Cytotoxic and proinflammatory effects of ambient and source-related particulate matter (PM) in relation to the production of reactive oxygen species (ROS) and cytokine adsorption by particles. Inhal Toxicol 22(Suppl 2):37–47 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Gutierrez-Castillo, M. E. et al. Effect of chemical composition on the induction of DNA damage by urban airborne particulate matter. Environ Mol Mutagen 47:199–211 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Feltens, R. et al. Chlorobenzene induces oxidative stress in human lung epithelial cells in vitro. Toxicol Appl Pharmacol 242:100–108 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Koehler, C. et al. Aspects of nitrogen dioxide toxicity in environmental urban concentrations in human nasal epithelium. Toxicol Appl Pharmacol 245:219–225 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Cheah, N. P., Pennings, J. L., Vermeulen, J. P., van Schooten, F. J. & Opperhuizen, A. In vitro effects of aldehydes present in tobacco smoke on gene expression in human lung alveolar epithelial cells. Toxicol In Vitro 27:1072–1081 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Pozzi, R., De Berardis, B., Paoletti, L. & Guastadisegni, C. Inflammatory mediators induced by coarse (PM2.5–10) and fine (PM2.5) urban air particles in RAW 264.7 cells. Toxicology 183:243–254 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Shen, Y., Zhang, J., Xu, X., Fu, J. & Li, J. A new haplotype variability in complement C6 is marginally associated with resistance to Aeromonas hydrophila in grass carp. Fish Shellfish Immunol 34:1360–1365 (2013).

    Article  PubMed  Google Scholar 

  13. Jose, P. J. et al. Eotaxin: a potent eosinophil chemoattractant cytokine detected in a guinea pig model of allergic airways inflammation. J Exp Med 179:881–887 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Garcia-Zepeda, E. A. et al. Human eotaxin is a specific chemoattractant for eosinophil cells and provides a new mechanism to explain tissue eosinophilia. Nat Med 2:449–456 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Nezzar, H. et al. Molecular and metabolic retinoid pathways in the human ocular surface. Mol Vis 13:1641–1650 (2007).

    CAS  PubMed  Google Scholar 

  16. Jones, R. J., Dickerson, S., Bhende, P. M., Delecluse, H. J. & Kenney, S. C. Epstein-Barr virus lytic infection induces retinoic acid-responsive genes through induction of a retinol-metabolizing enzyme, DHRS9. J Biol Chem 282:8317–8324 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Li, C. S. et al. Association of FOXJ1 polymorphisms with systemic lupus erythematosus and rheumatoid arthritis in Korean population. Exp Mol Med 39:805–811 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Pan, Y. H. et al. Adaptation of phenylalanine and tyrosine catabolic pathway to hibernation in bats. PLoS One 8:e62039 (2013).

    Article  Google Scholar 

  19. Broome, M. A. & Hunter, T. Requirement for c-Src catalytic activity and the SH3 domain in platelet-derived growth factor BB and epidermal growth factor mitogenic signaling. J Biol Chem 271:16798–16806 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Yarden, Y. & Ullrich, A. Growth factor receptor tyrosine kinases. Annu Rev Biochem 57:443–478 (1988).

    Article  CAS  PubMed  Google Scholar 

  21. Hitosugi, T. et al. Tyrosine phosphorylation of mitochondrial pyruvate dehydrogenase kinase 1 is important for cancer metabolism. Mol Cell 44:864–877 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Choudhary, D., Jansson, I., Stoilov, I., Sarfarazi, M. & Schenkman, J. B. Metabolism of retinoids and arachidonic acid by human and mouse cytochrome P450 1b1. Drug Metab Dispos 32:840–847 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Ashton, K. A. et al. Polymorphisms in genes of the steroid hormone biosynthesis and metabolism pathways and endometrial cancer risk. Cancer Epidemiol 34:328–337 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Ghisari, M., Long, M. & Bonefeld-Jorgensen, E. C. Genetic polymorphisms in CYP1A1, CYP1B1 and COMT genes in Greenlandic Inuit and Europeans. Int J Circumpolar Health 72, 21113 (2013).

    Article  PubMed  Google Scholar 

  25. Cachon, B. F. et al. Proinflammatory effects and oxidative stress within human bronchial epithelial cells exposed to atmospheric particulate matter (PM(2.5) and PM(>2.5)) collected from Cotonou, Benin. Environ Pollut 185:340–351 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Hussein, A. G., Pasha, H. F., El-Shahat, H. M., Gad, D. M. & Toam, M. M. CYP1A1 gene polymorphisms and smoking status as modifier factors for lung cancer risk. Gene 541:26–30 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Sharma, K. L. et al. Association of genetic variants of xenobiotic and estrogen metabolism pathway (CYP1A1 and CYP1B1) with gallbladder cancer susceptibility. Tumour Biol 35:5431–5439 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Chen, Y. Z. et al. Genetic polymorphisms in the CYP 1A1 and CYP1B1 genes and susceptibility to bladder cancer: a meta-analysis. Mol Biol Rep 41:4929–4940 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Berber, U. et al. CYP1A1 (Ile462Val), CYP1B1 (Ala 119Ser and Val432Leu), GSTM1 (null), and GSTT1 (null) polymorphisms and bladder cancer risk in a Turkish population. Asian Pac J Cancer Prev 14:3925–3929 (2013).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Chun Ryu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, SC., Shin, CY., Song, MK. et al. Gene expression profiling of human alveolar epithelial cells (A549 cells) exposed to atmospheric particulate matter 2.5 (PM2.5) collected from Seoul, Korea. Mol. Cell. Toxicol. 10, 361–368 (2014). https://doi.org/10.1007/s13273-014-0040-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-014-0040-9

Keywords

Navigation