Skip to main content
Log in

Integrated analysis of microRNA and mRNA expression profiles highlights alterations in modulation of the apoptosis-related pathway under nonanal exposure

  • Original Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

We have shown that aldehydes impact gene expression profiles of bronchial airway associated with pulmonary toxicity. In this study, we aimed to determine whether microRNA (miRNA) plays a role in regulating the airway gene expression response to aldehyde exposure. We analyzed whole genome miRNA and mRNA expression profiles upon nonanal exposure of human alveolar epithelial cells to identify nonanalsensitive miRNAs and to characterize the relationships between miRNAs and the expression of the candidate target genes involved in aldehyde-induced toxicity. Microarray analysis identified six miRNAs that were differentially expressed in nonanal-exposed A549 human alveolar cells. Integrated anti-correlation analyses of miRNA and mRNA expression profiles identified 157 putative target genes. GO analysis of 157 putative target genes demonstrated that the biological category “apoptosis-related pathway” was prominently annotated. Moreover, we detected an increased number of apoptotic cells in the nonanal-exposed group. By integrating the transcriptome and microRNAome, we provide evidence that nonanal can affect apoptosisinduced toxicity signaling. Therefore, this study proves the benefit of an integrated miRNA-mRNA approach for identifying toxicity mechanisms induced by environmental toxicants using an in vitro human model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernstein, J. A. et al. The health effects of non-industrial indoor air pollution. J Allergy Clin Immunol 121: 585–591 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Baumann, M. G. D., Lorenz, L. F., Batterman, S. A. & Zhang, G. Z. Aldehyde emissions from particleboard and medium density fiberboard products. Forest Prod J 50:75–82 (2000).

    CAS  Google Scholar 

  3. Nazaroff, W. W. & Weschler, C. J. Cleaning products and air fresheners: exposure to primary and secondary air pollutants. Atmos Environ 38:2841–2865 (2004).

    Article  CAS  Google Scholar 

  4. O’Brien, P. J., Siraki, A. G. & Shangari, N. Aldehyde sources, metabolism, molecular toxicity mechanisms, and possible effects on human health. Crit Rev Toxicol 35:609–662 (2005).

    Article  PubMed  Google Scholar 

  5. Lecureur, V. et al. MAPK- and PKC/CREB-dependent induction of interleukin-11 by the environmental contaminant formaldehyde in human bronchial epithelial cells. Toxicology 292:13–22 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Bein, K. & Leikauf, G. D. Acrolein — a pulmonary hazard. Mol Nutr Food Res 55:1342–1360 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Tang, M. S. et al. Acrolein induced DNA damage, mutagenicity and effect on DNA repair. Mol Nutr Food Res 55:1291–1300 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Oyama, T. et al. Susceptibility to inhalation toxicity of acetaldehyde in Aldh2 knockout mice. Front Biosci 12:1927–1934 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Wolkoffa, P. et al. Risk in cleaning-chemical and physical exposure. Sci Total Environ 215:135–156 (1998).

    Article  Google Scholar 

  10. Fullana, A., Carbonell-Barrachina, A. A. & Sidhu, S. Volatile aldehyde emissions from heated cooking oils. J Sci Food Agr 84:2015–2021 (2004).

    Article  CAS  Google Scholar 

  11. Maddalena, R. L. et al. Interim Report: VOC and Aldehyde Emissions in Four FEMA Temporary Housing Units. LBNL Interim Report: FEMA THU Material Emissions (2008).

    Google Scholar 

  12. Sarigiannis, D. A. et al. Exposure to major volatile organic compounds and carbonyls in European indoor environments and associated health risk. Environ Int 37:743–765 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Clayton, G. D. & Clayton, F. E. (eds.). Patty’s Industrial Hygiene and Toxicology: Volume 2A, 2B, 2C: Toxicology. 3rd ed. New York: John Wiley Sons, 1981–1982. p. 2633.

    Google Scholar 

  14. NIOSH; NOES. National Occupational Exposure Survey conducted from 1981–1983. Estimated numbers of employees potentially exposed to specific agents by 2-digit standard industrial classification (SIC). Available from http://www.cdc.gov/noes/ as of Feb (2009).

    Google Scholar 

  15. Lim, S. K. et al. Formaldehyde induces apoptosis through decreased Prx 2 via p38 MAPK in lung epithelial cells. Toxicology 271:100–106 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Kuwano, K. et al. Expression of apoptosis-regulatory genes in epithelial cells in pulmonary fibrosis in mice. J Pathol 190:221–229 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Iyer, R., Hamilton, R. F., Li, L. & Holian, A. Silicainduced apoptosis mediated via scavenger receptor in human alveolar macrophages. Toxicol Appl Pharmacol 141:84–92 (1996).

    CAS  PubMed  Google Scholar 

  18. Lee, H. S. et al. Analysis of mRNA expression profiles highlights alterations in modulation of the DNA damage-related genes under butanal exposure in A549 human alveolar epithelial cells. Mol Cell Toxicol 9:85–94 (2013).

    Article  CAS  Google Scholar 

  19. Fukushima, T., Hamada, Y., Yamada, H. & Horii, I. Changes of micro-RNA expression in rat liver treated by acetaminophen or carbon tetrachloride-regulating role of micro-RNA for RNA expression. J Toxicol Sci 32:401–409 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Pogribny, I. P. et al. Induction of microRNAome deregulation in rat liver by long-term tamoxifen exposure. Mutat Res 619:30–37 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Song, M. K., Park, Y. K. & Ryu, J. C. Polycyclic aromatic hydrocarbon (PAH)-mediated upregulation of hepatic microRNA-181 family promotes cancer cell migration by targeting MAPK phosphatase-5, regulating the activation of p38 MAPK. Toxicol Appl Pharmacol [Epub ahead of print] (2013).

    Google Scholar 

  22. Guo, H., Ingolia, N. T., Weissman, J. S. & Bartel, D. P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466:835–840 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Lynam-Lennon, N., Maher, S. G. & Reynolds, J. V. The roles of micro-RNA in cancer and apoptosis. Biol Rev Camb Philos Soc 84:55–71 (2009).

    Article  PubMed  Google Scholar 

  24. Sun, B. K. & Tsao, H. Small RNAs in development and disease. J Am Acad Dermatol 59:725–737 (2008).

    Article  PubMed  Google Scholar 

  25. Liu, H. & Kohane, I. S. Tissue and process specific microRNA-mRNA co-expression in mammalian development and malignancy. PLoS One 4:e5436 (2009).

    Article  PubMed Central  PubMed  Google Scholar 

  26. Huang, J. C. et al. Using expression profiling data to identify human microRNA targets. Nat Methods 4: 1045–1049 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Sonkoly, E. & Pivarcsi, A. MicroRNAs in inflammation and response to injuries induced by environmental pollution. Mutat Res 17:46–53 (2011).

    Article  Google Scholar 

  28. Yokoi, T. & Nakajima, M. Toxicological implications of modulation of gene expression by microRNAs. Toxicol Sci 123:1–14 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Lema, C. & Cunningham, M. J. MicroRNAs and their implications in toxicological research. Toxicol Lett 198: 100–105 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Wang, K. et al. Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proc Natl Acad Sci USA 106:4402–4407 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Feltens, R. et al. Chlorobenzene induces oxidative stress in human lung epithelial cells in vitro. Toxicol Appl Pharmacol 242:100–108 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Koehler, C. et al. Aspects of nitrogen dioxide toxicity in environmental urban concentrations in human nasal epithelium. Toxicol Appl Pharmacol 245:219–225 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Roggen, E. L., Soni, N. K. & Verheyen, G. R. Respiratory immunotoxicity: an in vitro assessment. Toxicol In Vitro 20:1249–1264 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Wang, F., Li, C., Liu, W. & Jin, Y. Modulation of microRNA expression by volatile organic compounds in mouse lung. Environ Toxicol DOI 10.1002 /tox (2012).

    Google Scholar 

  35. Farh, K. K. et al. The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science 310:1817–1821 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Favaro, E. et al. MicroRNA-210 regulates mitochondrial free radical response to hypoxia and krebs cycle in cancer cells by targeting iron sulfur cluster protein ISCU. PLoS One 5: e10345 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  37. Roy, J., Pallepati, P., Bettaieb, A. & Averill-Bates, D. A. Acrolein induces apoptosis through the death receptor pathway in A549 lung cells: role of p53. Can J Physiol Pharmacol 88:353–368 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Chopra, M., Reuben, J. S. & Sharma, A. C. Acute lung injury: apoptosis and signaling mechanisms. Exp Biol Med 34:361–371 (2009).

    Article  Google Scholar 

  39. Levy, M., Khan, E., Careaga, M. & Goldkorn, T. Neutral sphingomyelinase 2 is activated by cigarette smoke to augment ceramide-induced apoptosis in lung cell death. Am J Physiol Lung Cell Mol Physiol 297:125–133 (2009).

    Article  Google Scholar 

  40. Sandikci, M., Seyrek, K., Aksit, H. & Kose, H. Inhalation of formaldehyde and xylene induces apoptotic cell death in the lung tissue. Toxicol Ind Health 25:455–461 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Kheradmand, F. et al. Transforming growth factoralpha enhances alveolar epithelial cell repair in a new in vitro model. Am J Physiol 267:728–738 (1994).

    Google Scholar 

  42. Geiser, T., Jarreau, P. H., Atabai, K. & Matthay, M. A. Interleukin-1beta augments in vitro alveolar epithelial repair. Am J Physiol Lung Cell Mol Physiol 279:1184–1190 (2000).

    Google Scholar 

  43. Frankel, S. K. et al. TNF-alpha sensitizes normal and fibrotic human lung fibroblasts to Fas-induced apoptosis. Am J Respir Cell Mol Biol 34:293–304 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Gochuico, B. R. et al. Airway epithelial Fas ligand expression: potential role in modulating bronchial inflammation. Am J Physiol 274:L444–449 (1998).

    CAS  PubMed  Google Scholar 

  45. Watanabe-Fukunaga, R., Brannan, C. I., Copeland, N. G., Jenkins, N. A. & Nagata, S. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356:314–317 (1992).

    Article  CAS  PubMed  Google Scholar 

  46. McGrath, E. E. et al. Deficiency of tumour necrosis factor-related apoptosis-inducing ligand exacerbates lung injury and fibrosis. Thorax 67:796–803 (2012).

    Article  PubMed Central  PubMed  Google Scholar 

  47. Hart, K. et al. A combination of functional polymorphisms in the CASP8, MMP1, IL10 and SEPS1 genes affects risk of non-small cell lung cancer. Lung Cancer 71:123–129 (2011).

    Article  PubMed  Google Scholar 

  48. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63 (1983).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Chun Ryu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, HS., Song, MK. & Ryu, JC. Integrated analysis of microRNA and mRNA expression profiles highlights alterations in modulation of the apoptosis-related pathway under nonanal exposure. Mol. Cell. Toxicol. 9, 351–364 (2013). https://doi.org/10.1007/s13273-013-0044-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-013-0044-x

Keywords

Navigation