Skip to main content
Log in

The biological toxicities of two crystalline phases and differential sizes of TiO2 nanoparticles during zebrafish embryogenesis development

  • Original Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

In this study, we investigated the biological toxicities of two crystalline phases and differential sizes of TiO2 nanoparticles (anatase; 7–8 nm, 12–14 nm, and 17–23 nm, rutile; 80–100 nm, 150–200 nm, and 500 nm) using the zebrafish in an aquatic ecosystem. The zebrafish morphants that survived exposure to the TiO2 nanoparticles exhibited incomplete notochord formation, with epidermal malformations observed in the larvae exposed to the anatase crystal type of TiO2 nanoparticle (12–14 nm). In particular, there was more apoptosis after exposure to specific particle sizes (12–14 nm) than there was with the larger particle size (17–23 nm) of the anatase crystal type of TiO2 nanoparticles. In addition, the group exposed to the anatase crystal type TiO2 nanoparticles (7–8 nm, 12–14 nm, and 17–23 nm) showed more accumulation in the M1 phase of the cell cycle than did the control group. We observed that the TiO2 nanoparticles penetrated zebrafish larvae cells; the anatase type (12–14 nm) penetrated the nucleus, and the rutile type (80–100 nm) penetrated the mitochondria. The results of the present study suggest that the toxic effects of TiO2 nanoparticles on zebrafish embryogenesis depend on the crystalline phase and size of the nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen, N. S. et al. Photocatalytic coatings for environmental applications. Photochem Photobiol 81:279–290 (2005).

    Article  PubMed  CAS  Google Scholar 

  2. Kaida, T., Kobayashi, K., Adachi, M. & Suzuki, F. Optical characteristics of titanium oxide interference film and the film laminated with oxides and their applications for cosmetics. J Cosmet Sci 55:219–220 (2004).

    PubMed  Google Scholar 

  3. Wolf, R., Matz, H., Orion, E. & Lipozencić, J. Sunscreens — the ultimate cosmetic, Acta Dermatovenerol Croat 11:158–162 (2003).

    PubMed  Google Scholar 

  4. Dick, C. A., Brown, D. M., Donaldson, K. & Stone, V. The role of free radicals in the toxic and inflammatory effects of four different ultrafine particle types. Inhal Toxicol 15:39–52 (2003).

    Article  PubMed  CAS  Google Scholar 

  5. Olmedo, D. G., Tasat, D. R., Guglielmotti, M. B. & Cabrini, R. L. Effects of titanium dioxide on the oxidative metabolism of alveolar macrophages: an experimental study in rats. J Biomed Mater Res A. 73:142–149 (2005).

    PubMed  Google Scholar 

  6. Yeo, M. K. & Kang, M. Photodecomposition of Bisphenol A on nanometer-sized TiO2 thin film and the associated biological toxicity to zebrafish (Danio rerio) during and after photocatalysis. Water Research 40: 1906–1914 (2006).

    Article  PubMed  CAS  Google Scholar 

  7. Hirakawa, K., Mori, M., Yoshida, M., Oikawa, S. & Kawanishi, S. Photo-irradiated titanium dioxide catalyzes site specific DNA damage via generation of hydrogen peroxide. Free Radic Res 38:439–447 (2004).

    Article  PubMed  CAS  Google Scholar 

  8. Braydich-Stolle, L. K., Schaeublin, N. M., Murdock, R. C., Schlager, J. J. & Hussain, S. M. Crystal structure mediates mode of cell death in TiO2 nanotoxicity. J Nanopart Res 11:1361–1374 (2009).

    Article  CAS  Google Scholar 

  9. Jin, C. et al. Cellular toxicity of TiO2 nanoparticles in anatase and rutile crystal phase. Biol Trace Elem Res 141:3–15 (2011).

    Article  PubMed  CAS  Google Scholar 

  10. Lee, Y., Chae, J. & Kang, M. Comparison of the photovoltaic efficiency on DSSC for nanometer sized TiO2 using a conventional sol-gel and solvothermal methods. J Ind Eng Chem 16:609–614 (2010).

    Article  CAS  Google Scholar 

  11. Westerfield, M. The Zebrafish book: A Guide for the Laboratory Use of Zebrafish (Danio rerio). University of Oregon Press, Eugene (2000).

    Google Scholar 

  12. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. & Schilling, T. F. Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310 (1995).

    Article  PubMed  CAS  Google Scholar 

  13. Yeo, M. K. & Kang, M. S. The effect of nano-scale Zn-doped TiO2 and pure TiO2 particles on Hydra magnipapillata. Mol Cell Toxicol 6:9–17 (2010).

    Article  CAS  Google Scholar 

  14. Yoo, K. H. et al. 2β, 3α, 23-trihydroxyrus-12-ene-28-oic acid induces the apoptosis of human hepatoma HepG2 cells. J Korean Soc Appl Biol Chem 49:270–275 (2006).

    CAS  Google Scholar 

  15. Covassin, L. et al. Global analysis of hematopoietic and vascular endothelial gene expression by tissue specific microarray profiling in zebrafish. Dev Biol 299:551–562 (2006).

    Article  PubMed  CAS  Google Scholar 

  16. Guan, K. S. & Yin, Y. S. Effect of rare earth addition on super-hydrophilic property of TiO2/SiO2 composite film. Materials Chemistry and Physics 92:10–15 (2005).

    Article  CAS  Google Scholar 

  17. Chung, T. H. et al. The effect of surface charge on the uptake and biological function of mesoporous silica nanoparticles in 3T3-L1 cells and human mesenchymal stem cells. Biomaterials 28:2959–2966 (2007).

    Article  PubMed  CAS  Google Scholar 

  18. Gratton, S. E. et al. The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci USA 105:11613–11618 (2008).

    Article  PubMed  CAS  Google Scholar 

  19. Harush-Frenkel, O., Rozentur, E., Benita, S. & Altschuler, Y. Surface charge of nanoparticles determines their endocytic and transcytotic pathway in polarized MDCK cells. Biomacromolecules 9:435–443 (2008).

    Article  PubMed  CAS  Google Scholar 

  20. Lai, S. K. et al. Privileged delivery of polymer nanoparticles to the perinuclear region of live cells via a non-clathrin, non-degradative pathway. Biomaterials 28:2876–2884 (2007).

    Article  PubMed  CAS  Google Scholar 

  21. Yeo, M. K. & Kim, H. E. Gene expression in zebrafish embryos following exposure to TiO2 nanoparticles. Mol Cell Toxicol 6:97–104 (2010).

    Article  CAS  Google Scholar 

  22. Okuda, Y. et al. Comparative genomic and expression analysis of group B1 sox genes in zebrafish indicates their diversification during vertebrate evolution. Dev Dyn 235:811–825 (2006).

    Article  PubMed  CAS  Google Scholar 

  23. Yeo, M. K. & Kang, M. Effects of nanometer sized silver materials on biological toxicity during zebrafish embryogenesis. Bull Korean Chem Soc 29:1179–1184 (2008).

    Article  CAS  Google Scholar 

  24. Yeo, M. K. & Pak, S. W. Exposing zebrafish to silver nanoparticles during caudal fin regeneration disrupts caudal fin growth and p53 signaling. Mol Cell Toxicol 4:311–317 (2008).

    Google Scholar 

  25. Yeo, M. K. & Kang, M. S. Effects of CuxTiOy nanometer particles on biological toxicity during zebrafish embryogenesis. Korean J Chem Eng 26:711–718 (2009).

    Article  CAS  Google Scholar 

  26. Yeo, M. K. & Yoon, J. W. Comparison of the effects of nano-silver antibacterial coatings and silver ions on zebrafish embryogenesis. Mol Cell Toxicol 1:23–31 (2009).

    Google Scholar 

  27. Thurn, K. et al. Nanoparticles for applications in cellular imaging. Nanoscale Res Lett 2:430–441 (2007).

    Article  PubMed  CAS  Google Scholar 

  28. Xue, C. et al. Nano titanium dioxide induces the generation of ROS and potential damage in HaCaT cells under UVA irradiation. J Nanosci Nanotechnol 10: 8500–8507 (2010).

    Article  PubMed  CAS  Google Scholar 

  29. Ye, Y. et al. Nano-SiO2 induces apoptosis via activation of p53 and Bax mediated by oxidative stress in human hepatic cell line. Toxicol In Vitro 24:751–758 (2010).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Kyeong Yeo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeo, MK., Kang, M. The biological toxicities of two crystalline phases and differential sizes of TiO2 nanoparticles during zebrafish embryogenesis development. Mol. Cell. Toxicol. 8, 317–326 (2012). https://doi.org/10.1007/s13273-012-0039-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-012-0039-z

Keywords

Navigation