Skip to main content
Log in

Correlation between nutrition intake and gene expression profiles in children with asthma

  • Original Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Asthma is a complex inflammatory disease and its prevalence has increased worldwide, especially in young children. In this study, we used a ‘24-hour recall method’ to identify differences between children with and without asthma in energy intake and energy-adjusted nutrition intake. We also performed reverse transcription-polymerase chain reaction (RTPCR) with pathway-targeted arrays (RT2 Profiler™ PCR Array) to investigate the expression profiles of chemokines and cytokines in children with asthma. The intake of vitamin C in mild and moderate asthma was significantly higher than that in healthy controls. Vitamin E intake in the mild asthma group was also significantly higher. Twenty-three genes were expressed at higher levels in severe asthma compared with healthy controls. Using the human Th1-Th2-Th3 PCR Array, we found 17 genes were upregulated in severe asthma, including the Th2-related genes CCL7, IL13, and CCL-11 (eotaxin). These PCR Array results revealed that the genes that were most profoundly increased in asthma encoded for key proinflammatory and chemotactic molecules. Our observations lead us to speculate that the interaction between gene expression and dietary intake is important for the development of asthma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aoki, T. et al. Expression profiling of genes related to asthma exacerbations. Clin Exp Allergy 39:213–221 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Downs, S. H. et al. Continued increase in the prevalence of asthma and atopy. Arch Dis Child 84:20–23 (2002).

    Article  Google Scholar 

  3. Akinbami, L. J. & Schoendork, K. C. Trends in childhood asthma: prevalence, health care utilization, and mortality. Pediatrics 100:315–322 (2002).

    Article  Google Scholar 

  4. Hijazi, N., Abalkhail, B. & Seaton, A. Diet and childhood asthma in a society in transition: a study in urban and rural Saudi Arabia. Thorax 55:775–779 (2000a).

    Article  CAS  PubMed  Google Scholar 

  5. Wickens, K. et al. Fast-goods — are they a risk factor for asthma? Allergy 60:1537–1541 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Huang, S. L. et al. Dietary factors associated with physician diagnosed asthma and allergic rhinitis in teenagers: analyses of the first Nutrition and Health Survey in Taiwan. Clin Exp Allergy 31:259–264 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Fogarty, A. & Britton, J. The role of diet in the aetiology of asthma. Clin Exp Allergy 30:615–627 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Kim, J. H., Ellwood, P. E. & Asher, M. I. Diet and asthma: looking back, moving forward. Respir Res 10:49–56 (2009).

    Article  PubMed  Google Scholar 

  9. Hatch, G. E. Asthma, inhaled oxidants, and dietary antioxidants. Am J Clin Nutr 61(Suppl.):625S–630S (1995).

    CAS  PubMed  Google Scholar 

  10. Devereux, G. et al. Low material vitamin E intake during pregnancy is accociated with asthma in 5-yearold children. Am J Respir Crit Care Med 174:499–507 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Miller, R. L. & Ho, S. M. Environmental epigenetics and asthma: current concepts and call for studies. Am J Respir Care Med 177:657–673 (2008).

    Google Scholar 

  12. Hansel, N. N. et al. Analysis of CD4+ T-cell gene expression in allergic subjects using two different microarray platforms. Allergy 63:366–369 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Hamid, Q. & Tulic, M. Immunobiology of asthma. Annu Rev Physiol 71:489–507 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Palmqvist, C., Wardlaw, A. J. & Bradding, P. Chemokines and their receptors as potential targets for the treatment of asthma. Brit J Pharmacol 151:725–736 (2007).

    Article  CAS  Google Scholar 

  15. Lukacs, N. W., Hogaboam, C., Campbell, E. & Kunkel, S. L. Chemokines: function, regulation and alteration of inflammatory responses. Chem Immunol 72:102 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Zlotnik, A. & Yoshie, O. Chemokines: a new classification system and their role in immunity. Immunity 12:121–127 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Fulkerson, P. C., Zimmermann, N., Hassman, L. M., Finkelman, F. D. & Rothenberg, M. E. Pulmonary chemokine expression is coordinately regulated by STAT1, STAT6, and IFN-gamma. J Immunol 173:7565–7574 (2004).

    CAS  PubMed  Google Scholar 

  18. Ying, S. et al. Enhanced expression of eotaxin and CCR3 mRNA and protein in atopic asthma. Association with airway hyperresponsiveness and predominant co-localization of eotaxin mRNA to bronchial epithelial and endothelial cells. Eur J Immunol 27:3507–3516 (1997c).

    Article  CAS  PubMed  Google Scholar 

  19. Kalayci, O., Besler, T., Kilinc, K., Sekerel, B. E. & Saraclar, Y. Serum levels of antitoxidant vitamins (alpha tocopherol, beta carotene, and ascorbic acid) in children with bronchial asthma. Turk J Pediatr 42:17–21 (2000).

    CAS  PubMed  Google Scholar 

  20. Wood, L. G. & Gibson, P. G. Dietary factors lead to innate immune activation in asthma. Pharmacol Ther 123:37–53 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Patel, B. D. et al. Dietary antioxidants and asthma in adults. Thorax 61:388–393 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Chan, A. C. Partners in defense, vitamin E and vitamin C. Can J Physiol Pharmacol 71:725–731 (1993).

    CAS  PubMed  Google Scholar 

  23. Zingg, J. M. Vitamin E and mast cells. Vitam Horm 76:393–418 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. van Tits, L. J., Demacker, P. N., de Graaf, J., Hak-Lemmers, H. L. & Stalenhoef, A. F. alpha-tocopherol supplementation decreases production of superoxide and cytokines by leukocytes ex vivo in both normolipidemic and hypertriglyceridemic individuals. Am J Clin Nutr 71:458–464 (2000).

    PubMed  Google Scholar 

  25. Davies, D. E., Wicks, J., Powell, R. M., Puddicombe, S. M. & Holgate, S. T. Airway remodeling in asthma: New Insights. J Allergy Clin Immunol 111:215–225 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. NIH. National Heart Lung and Blood Institute NIH guidelines for the diagnosis and management of asthma. Washington, DC. US Government Printing Office (2002).

    Google Scholar 

  27. Singh, V. What is new in the management of childhood asthma? Indian J Pediat 75:845–853 (2008).

    Article  PubMed  Google Scholar 

  28. Devaraj, S. & Jialal, I. Alpha-tocopherol decreases interleukin-1 beta release from activated human monocytes by inhibition of 5-lipoxygenase. Arterioscler Thromb Vasc Biol 19:1125–1133 (1999).

    CAS  PubMed  Google Scholar 

  29. Ogawa, K. et al. Activin A functions as a Th2 cytokine in the promotion of the alternative activation of marcropharge. J Immuno 177:6787–6794 (2006).

    CAS  Google Scholar 

  30. Karagiannidis, C. et al. Activin A is an acute allergen-responsive cytokine and provides a link to TGF-beta-mediated airway remodeling in asthma. J Allergy Clin Immuno 117:111–118 (2006).

    Article  CAS  Google Scholar 

  31. Xanthou, G. et al. Osteopontin has a crucial role in allergic airway disease through regulation of dendritic cell subsets. Nat Med 13:570–578 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Castro-Giner, F. et al. Gene-environment interactions in asthma. Occup Environ Med 63:776–786 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Martinez, F. D. Gene-environment interactions in asthma: with apologies to William of Ockham. Proc Am Thorac Soc 4:26–31 (2007).

    Article  PubMed  Google Scholar 

  34. Kim, J.-H., Philippa, E. E. & Asher, I. M. Diet and asthma: looking back, moving forward. Respiratory Research. Respir Res 10:49 (2009).

    Article  PubMed  Google Scholar 

  35. Du, W. D. et al. Therapeutic efficacy of high-dose vitamin C on acute pancreatitis and its potential mechanisms. World J Gastroenterol 9:2565–2569 (2003).

    CAS  PubMed  Google Scholar 

  36. Devaraj, S. & Jialal, I. Alpha tocopherol supplementation decreases serum C-reactive protein and monocyte interleukin-6 levels in normal volunteers and type 2 diabetic patients. Free Radic Biol Med 29:790–792 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Devaraj, S. & Jialal, I. Alpha-tocopherol decreases tumor necrosis factor-alpha mRNA and protein from activated human monocytes by inhibition of 5-lipoxygenase. Free Radic Biol Med 38:1212–1220 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meyoung-Kon Kim.

Additional information

These authors contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pie, JE., Kim, YR., Kim, IK. et al. Correlation between nutrition intake and gene expression profiles in children with asthma. Mol. Cell. Toxicol. 6, 313–319 (2010). https://doi.org/10.1007/s13273-010-0042-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-010-0042-1

Keywords

Navigation