Skip to main content
Log in

Cytotoxicity and genotoxicity of nano-silver in mammalian cell lines

  • Original Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Nano-silver (Ag) with antimicrobial activity is by far the most commercialized nano-compound. The hazards associated with human exposure to nanosized-silver should be investigated to facilitate the risk assessment process. Recent studies have shown that inflammatory, oxidative, genotoxic, and cytotoxic consequences are associated with silver particulate exposure, and are inherently linked. In the present study, the cytotoxicity and genotoxicity of nano-silver were investigated using the dye exclusion assay, the comet assay, and the mouse lymphoma thymidine kinase (tk+/−) gene mutation assay (MLA). IC20 values of nano-silver in L5178Y cells were determined the concentration of 3,769.53 μg/mL and 1,796.88 μg/mL with and without S-9, respectively. And in BEAS-2B cell, IC20 values were calculated to 1,171.88 μg/mL and 761.72 μg/mL with and without S-9, respectively. From these results, nano-silver was more cytotoxic in absence of S-9 metabolic activation system and at the BEAS-2B cells. In the comet assay, L5178Y cells and BEAS-2B cells were treated with nano-silver which significantly increased >2-fold tail moment with and without S-9. However, the mutant frequencies in the nano-silver treated L5178Y cells were slightly increased but not significant compared to the vehicle controls with and without S-9. The results of this study indicate that nano-silver can cause primary DNA damage and cytotoxicity but not mutagenicity in cultured mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dey, S. et al. Interactions between SIRT1 and AP-1 reveal a mechanistic insight into the growth promoting properties of alumina (Al2O3) nanoparticles in mouse skin epithelial cells. Carcinogenesis 29:1920–1929 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Balasubramanyam, A. et al. In vivo genotoxicity assessment of aluminium oxide nanomaterials in rat peripheral blood cells using the comet assay and micronucleus test. Mutagenesis 24:245–251 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Colvin, V. L. The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21:1166–1170 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Wijnhoven, S. W. P. et al. Nano-silver-a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3:109–138 (2009).

    Article  CAS  Google Scholar 

  5. Ip, M. et al. Antimicrobial activities of silver dressings: an in vitro comparison. J Med Microbiol 55:59–63 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Melaiye, A. et al. Silver (I)-imidazole cyclophane gemdiol complexes encapsulated by electrospun tecophilic nanoWbers: formation of nanosilver particles and antimicrobial activity. J Am Chem Soc 127:2285–2291 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Lubick, N. Nanosilver toxicity: ions, nanoparticles-or both? Environ Sci Technol 42:8617 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Arora, S., Jain, J., Rajwade, J. M., Paknikar, K. M. Cellular responses induced by silver nanoparticles: In vitro studies. Toxicol Lett 179:93–100 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Foldbjerg, R. PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicol Lett 190:156–162 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. AshaRani, P. V., Mun, G. L. K., Hande, M. P. & Valiyaveettil, S. Cytotoxicity and genotoxicity of siver nanoparticles in human cells. ACS Nano 3:279–290 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Singh, N. P. et al. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191 (1988).

    Article  CAS  PubMed  Google Scholar 

  12. Tice, R. R. et al. The single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206–221 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Anderson, D. & Plewa, M. J. The international comet assay workshop. Mutagenesis 13:67–73 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Fairbairn, D. W., Walburger, D. K., Fairbairn, J. J. & O’Neill, K. L. Key morphologic changes and DNA strand breaks in human lymphoid cells: discriminating apoptosis from necrosis. Scanning 18:407–416 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Speit, G. & Hartmann, A. The comet assay (single-cell gel test). A sensitive genotoxicity test for the detection of DNA damage and repair. Methods Mol Biol 113:203–212 (1999).

    CAS  PubMed  Google Scholar 

  16. Lok, C. N. et al. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5:916–924 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. ATSDR (Agency for toxic substances and Disease Registry) Toxicological profile for Silver. Prepared by Clement international corporation, under Contract 205-88-0608). U.S. public Health Service. ATSDR/TP-90-24 (1990).

  18. Hussain, S. M. et al. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19:975–983 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Hussain, S. M. et al. The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion. Toxicol Sci 92:456–463 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Braydich-Stolle, L., Hussain, S., Schlager, J. J. & Hofmann, M. C. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 88:412–419 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Carlson, C. et al. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112:13608–13619 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Arora, S., Jain, J., Rajwade, J. M. & Paknikar, K. M. Cellular responses induced by silver nanoparticles: in vitro studies. Toxicol Lett 179:93–100 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Foldbjerg, R., Dang, D. A. & Autrup, H. Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch Toxicol Epub ahead of print (2010).

  24. Kumari, M., Mukherjee, A. & Chandrasekaran, N. Genotoxicity of silver nanoparticles in Allium cepa. Sci Total Environ. 407:5243–5246 (2009).

    Google Scholar 

  25. Kuriyama, R. & Sakai, H. Role of tubulin-SH group in polymerization to microtubules. J Biochem 76:651–654 (1974).

    CAS  PubMed  Google Scholar 

  26. Klasterska, I., Natarajan, A. T. & Ramel, C. An interpretation of the origin of subchromatid aberrations and chromosome stickiness as a category of chromatid aberrations. Hereditas 83:153–162 (1976).

    Article  CAS  PubMed  Google Scholar 

  27. Lesniak, W. et al. Silver/Dendrimer nanocomposites as biomarkers: fabrication, characterization in vitro toxicity, and intracellular detection. Nano Lett 5:2123–2130 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Hsin, Y. H. et al. The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett 179:130–139 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Sung, J. H. et al. Lung function changes in spraguedawley rats after prolonged inhalation exposure to silver nanoparticles. Inhal Toxicol 20:567–574 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Clements, J. Gene mutation assay in mammalian cells, In O’Hare, S. & Atterwill, C. K. (Ed.), Methods in Molecular Biology, Vol. 43, In vitro Toxicity Testing Protocols. Humana Press Inc. Totowa, NJ. 43:277–286 (1990).

    Google Scholar 

  31. Robinson, W. D. et al. Statistical evaluation of bacterial/mammalian fluctuation test, in Statistical Evaluation of Mutagenicity Test Data (Kirkland, D. J., ed.). Cambridge University Press. Cambridge, UK, 102–140 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Chun Ryu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, YJ., Yang, S.I. & Ryu, JC. Cytotoxicity and genotoxicity of nano-silver in mammalian cell lines. Mol. Cell. Toxicol. 6, 119–125 (2010). https://doi.org/10.1007/s13273-010-0018-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-010-0018-1

Keywords

Navigation