Skip to main content
Log in

A thiosemicarbazone derivative induces triple negative breast cancer cell apoptosis: possible role of miRNA-125a-5p and miRNA-181a-5p

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Background

Breast cancer, the most commonly diagnosed malignancy in women, accounts for the highest cancer-related deaths worldwide. Triple negative breast cancer (TNBC), lacking the expression of estrogen, progesterone and HER2 receptors, has an aggressive clinical phenotype and is susceptible to chemotherapy but not to hormonal or targeted immunotherapy. In an attempt to identify potent and selective anti-TNBC agents, a set of thiosemicarbazone derivatives were screened for their cytotoxic activity against MDA-MB 231 breast cancer cell line.

Methods

MTT assay was used to examine cell viability. P53 phosphorylation status, poly (ADP-ribose) polymerase (PARP) cleavage as well as Bcl2 and Bax protein levels were assessed by Western blot. Quantitative Real Time-PCR was carried out to characterize miRNAs expression levels.

Results

Combining Cisplatin + thiosemicarbazone compound 4 showed potent anti-TNBC potential. Cisplatin + compound 4 significantly enhanced p53 phosphorylation, induced Bax amount, reduced Bcl2 protein levels, enhanced PARP cleavage and modulated miRNAs expression profile in TNBCs, with a particular overexpression of miR-125a-5p and miR-181a-5p. Intriguingly, miR-125a-5p and miR-181a-5p could significantly downregulate BCL2 expression by binding to their target sites in the 3′UTR.

Conclusions

Collectively, our results demonstrate an anti-TNBC activity of Cisplatin + thiosemicarbazone compound 4 combination mediated via induction of apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bartlett JMS, Brookes CL, Robson T, van de Velde CJH, Billingham LJ, Campbell FM, Grant M, Hasenburg A, Hille ETM, Kay C et al (2011) Estrogen receptor and progesterone receptor as predictive biomarkers of response to endocrine therapy: a prospectively powered pathology study in the tamoxifen and exemestane adjuvant multinational trial. J Clin Oncol 29:1531–1538

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baselga J, Tripathy D, Mendelsohn J, Baughman S, Benz CC, Dantis L, Sklarin NT, Seidman AD, Hudis CA, Moore J et al (1996) Phase II study of weekly intravenous recombinant humanized anti-p185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. J Clin Oncol 14:737–744

    CAS  PubMed  Google Scholar 

  • Bendale Y, Bendale V, Paul S (2017) Evaluation of cytotoxic activity of platinum nanoparticles against normal and cancer cells and its anticancer potential through induction of apoptosis. Integr Med Res 6:141–148

    PubMed  PubMed Central  Google Scholar 

  • Bisceglie F, Tavone M, Mussi F, Azzoni S, Montalbano S, Franzoni S, Tarasconi P, Buschini A, Pelosi G (2018) Effects of polar substituents on the biological activity of thiosemicarbazone metal complexes. J Inorg Biochem 179:60–70

    CAS  PubMed  Google Scholar 

  • Boyle P (2012) Triple-negative breast cancer: epidemiological considerations and recommendations. Ann Oncol 23(Suppl 6):iv7–iv12

    Google Scholar 

  • Buolamwini JK (1999) Novel anticancer drug discovery. Curr Opin Chem Biol 3:500–509

    CAS  PubMed  Google Scholar 

  • Carey LA, Perou CM, Livasy CA, Dressler LG, Cowan D, Conway K, Karaca G, Troester MA, Tse CK, Edmiston S et al (2006) Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA 295:2492–2502

    CAS  PubMed  Google Scholar 

  • Carey L, Winer E, Viale G, Cameron D, Gianni L (2010) Triple-negative breast cancer: disease entity or title of convenience? Nat Rev Clin Oncol 7:683–692

    PubMed  Google Scholar 

  • Chacón RD, Costanzo MV (2010) Triple-negative breast cancer. Breast Cancer Res 12:S3

    PubMed  PubMed Central  Google Scholar 

  • Chen G-Q, Zhao Z-W, Zhou H-Y, Liu Y-J, Yang H-J (2010) Systematic analysis of microRNA involved in resistance of the MCF-7 human breast cancer cell to doxorubicin. Med Oncol 27:406–415

    CAS  PubMed  Google Scholar 

  • Cho WCS (2007) OncomiRs: the discovery and progress of microRNAs in cancers. Mol Cancer 6:60

    PubMed  PubMed Central  Google Scholar 

  • Eliaš J, Dimitrio L, Clairambault J, Natalini R (2014) The p53 protein and its molecular network: modelling a missing link between DNA damage and cell fate. Biochim Biophys Acta Proteins Proteom 1844:232–247

    Google Scholar 

  • Hu W, Zhou W, Xia C, Wen X (2006) Synthesis and anticancer activity of thiosemicarbazones. Bioorg Med Chem Lett 16:2213–2218

    CAS  PubMed  Google Scholar 

  • Hu W, Feng Z, Levine AJ (2012) The regulation of multiple p53 stress responses is mediated through MDM2. Genes Cancer 3:199–208

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hudis CA (2007) Trastuzumab—mechanism of action and use in clinical practice. N Engl J Med 357:39–51

    CAS  PubMed  Google Scholar 

  • Hudis CA, Gianni L (2011) Triple-negative breast cancer: an unmet medical need. Oncologist 16(Suppl 1):1–11

    PubMed  Google Scholar 

  • Hummel R, Hussey DJ, Haier J (2010) MicroRNAs: predictors and modifiers of chemo- and radiotherapy in different tumour types. Eur J Cancer 46:298–311

    CAS  PubMed  Google Scholar 

  • Iorio MV, Ferracin M, Liu C-G, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M et al (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065–7070

    CAS  PubMed  Google Scholar 

  • Iorio MV, Casalini P, Piovan C, Di Leva G, Merlo A, Triulzi T, Ménard S, Croce CM, Tagliabue E (2009) microRNA-205 regulates HER3 in human breast cancer. Cancer Res 69:2195–2200

    CAS  PubMed  Google Scholar 

  • Joensuu H, Gligorov J (2012) Adjuvant treatments for triple-negative breast cancers. Ann Oncol 23(Suppl 6):vi40–vi45

    PubMed  Google Scholar 

  • Kalinowski DS, Richardson DR (2005) The evolution of iron chelators for the treatment of iron overload disease and cancer. Pharmacol Rev 57:547–583

    CAS  PubMed  Google Scholar 

  • Kamangar F, Dores GM, Anderson WF (2006) Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J Clin Oncol 24:2137–2150

    PubMed  Google Scholar 

  • Kaufmann SH, Desnoyers S, Ottaviano Y, Davidson NE, Poirier GG (1993) Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res 53:3976–3985

    CAS  PubMed  Google Scholar 

  • Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T (2007) Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 39:673–677

    CAS  PubMed  Google Scholar 

  • Leivonen S-K, Sahlberg KK, Mäkelä R, Due EU, Kallioniemi O, Børresen-Dale A-L, Perälä M (2014) High-throughput screens identify microRNAs essential for HER2 positive breast cancer cell growth. Mol Oncol 8:93–104

    CAS  PubMed  Google Scholar 

  • Liedtke C, Mazouni C, Hess KR, André F, Tordai A, Mejia JA, Symmans WF, Gonzalez-Angulo AM, Hennessy B, Green M et al (2008) Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol 26:1275–1281

    PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  • Mollereau B, Ma D (2014) The p53 control of apoptosis and proliferation: lessons from Drosophila. Apoptosis 19:1421–1429

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murren J, Modiano M, Clairmont C, Lambert P, Savaraj N, Doyle T, Sznol M (2003) Phase I and pharmacokinetic study of triapine, a potent ribonucleotide reductase inhibitor, administered daily for five days in patients with advanced solid tumors. Clin Cancer Res 9:4092–4100

    CAS  PubMed  Google Scholar 

  • Oakman C, Moretti E, Galardi F, Biagioni C, Santarpia L, Biganzoli L, Di Leo A (2011) Adjuvant systemic treatment for individual patients with triple negative breast cancer. Breast 20(Suppl 3):S135–S141

    PubMed  Google Scholar 

  • Parker JS, Mullins M, Cheang MCU, Leung S, Voduc D, Vickery T, Davies S, Fauron C, He X, Hu Z et al (2009) Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 27:1160–1167

    PubMed  PubMed Central  Google Scholar 

  • Pelosi G (2010) Thiosemicarbazone metal complexes: from structure to activity. Open Crystallogr J 3:16–28

    CAS  Google Scholar 

  • Peña-Chilet M, Martínez MT, Pérez-Fidalgo JA, Peiró-Chova L, Oltra SS, Tormo E, Alonso-Yuste E, Martinez-Delgado B, Eroles P, Climent J et al (2014) MicroRNA profile in very young women with breast cancer. BMC Cancer 14:529

    PubMed  PubMed Central  Google Scholar 

  • Pinto MCX, Dias DF, Del Puerto HL, Martins AS, Teixeira-Carvalho A, Martins-Filho OA, Badet B, Durand P, Alves RJ, Souza-Fagundes EM et al (2011) Discovery of cytotoxic and pro-apoptotic compounds against leukemia cells: tert-butyl-4-[(3-nitrophenoxy) methyl]-2,2-dimethyloxazolidine-3-carboxylate. Life Sci 89:786–794

    CAS  PubMed  Google Scholar 

  • Podo F, Buydens LMC, Degani H, Hilhorst R, Klipp E, Gribbestad IS, Van Huffel S, van Laarhoven HWM, Luts J, Monleon D et al (2010) Triple-negative breast cancer: present challenges and new perspectives. Mol Oncol 4:209–229

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pogribny IP, Filkowski JN, Tryndyak VP, Golubov A, Shpyleva SI, Kovalchuk O (2010) Alterations of microRNAs and their targets are associated with acquired resistance of MCF-7 breast cancer cells to cisplatin. Int J Cancer 127:1785–1794

    CAS  PubMed  Google Scholar 

  • Purdie CA, Quinlan P, Jordan LB, Ashfield A, Ogston S, Dewar JA, Thompson AM (2014) Progesterone receptor expression is an independent prognostic variable in early breast cancer: a population-based study. Br J Cancer 110:565–572

    CAS  PubMed  Google Scholar 

  • Raisch J, Darfeuille-Michaud A, Nguyen HTT (2013) Role of microRNAs in the immune system, inflammation and cancer. World J Gastroenterol 19:2985–2996

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rimawi MF, Mayer IA, Forero A, Nanda R, Goetz MP, Rodriguez AA, Pavlick AC, Wang T, Hilsenbeck SG, Gutierrez C et al (2013) Multicenter phase II study of neoadjuvant lapatinib and trastuzumab with hormonal therapy and without chemotherapy in patients with human epidermal growth factor receptor 2-overexpressing breast cancer: TBCRC 006. J Clin Oncol 31:1726–1731

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108

    CAS  PubMed  Google Scholar 

  • Tong Z, Liu N, Lin L, Guo X, Yang D, Zhang Q (2015) miR-125a-5p inhibits cell proliferation and induces apoptosis in colon cancer via targeting BCL2, BCL2L12 and MCL1. Biomed Pharmacother 75:129–136

    CAS  PubMed  Google Scholar 

  • Vandresen F, Falzirolli H, Almeida Batista SA, da Silva-Giardini APB, de Oliveira DN, Catharino RR, Ruiz ALTG, de Carvalho JE, Foglio MA, da Silva CC (2014) Novel R-(+)-limonene-based thiosemicarbazones and their antitumor activity against human tumor cell lines. Eur J Med Chem 79:110–116

    CAS  PubMed  Google Scholar 

  • Varamini P, Doroudchi M, Mohagheghzadeh A, Soltani M, Ghaderi A (2007) Cytotoxic evaluation of four haplophyllum. species with various tumor cell lines. Pharm Biol 45:299–302

    Google Scholar 

  • Westphal D, Dewson G, Czabotar PE, Kluck RM (2011) Molecular biology of Bax and Bak activation and action. Biochim Biophys Acta Mol Cell Res 1813:521–531

    CAS  Google Scholar 

  • Willimott S, Wagner SD (2012) miR-125b and miR-155 contribute to BCL2 repression and proliferation in response to CD40 ligand (CD154) in human leukemic B-cells. J Biol Chem 287:2608–2617

    CAS  PubMed  Google Scholar 

  • Wong R, Dolman SJ (2007) Isothiocyanates from tosyl chloride mediated decomposition of in situ generated dithiocarbamic acid salts. J Org Chem 72(10):3969–3971

    CAS  PubMed  Google Scholar 

  • Yang D, Zhan M, Chen T, Chen W, Zhang Y, Xu S, Yan J, Huang Q, Wang J (2017) miR-125b-5p enhances chemotherapy sensitivity to cisplatin by down-regulating Bcl2 in gallbladder cancer. Sci Rep 7:43109

    PubMed  PubMed Central  Google Scholar 

  • Yao G, Qi M, Ji X, Fan S, Xu L, Hayashi T, Tashiro S, Onodera S, Ikejima T (2014) ATM–p53 pathway causes G2/M arrest, but represses apoptosis in pseudolaric acid B-treated HeLa cells. Arch Biochem Biophys 558:51–60

    CAS  PubMed  Google Scholar 

  • Yu Y, Wong J, Lovejoy DB, Kalinowski DS, Richardson DR (2006) Chelators at the cancer coalface: desferrioxamine to Triapine and beyond. Clin Cancer Res 12:6876–6883

    CAS  PubMed  Google Scholar 

  • Zhang B, Pan X, Cobb GP, Anderson TA (2007) microRNAs as oncogenes and tumor suppressors. Dev Biol 302:1–12

    CAS  PubMed  Google Scholar 

  • Zhou M, Liu Z, Zhao Y, Ding Y, Liu H, Xi Y, Xiong W, Li G, Lu J, Fodstad O et al (2010) MicroRNA-125b confers the resistance of breast cancer cells to paclitaxel through suppression of pro-apoptotic Bcl-2 antagonist killer 1 (Bak1) expression. J Biol Chem 285:21496–21507

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu DX, Zhu W, Fang C, Fan L, Zou ZJ, Wang YH, Liu P, Hong M, Miao KR, Liu P et al (2012) MiR-181a/b significantly enhances drug sensitivity in chronic lymphocytic leukemia cells via targeting multiple anti-apoptosis genes. Carcinogenesis 33:1294–1301

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

All participants are acknowledged in the authorship.

Funding

This work is supported by the Lebanese University and the Lebanese National Council for Scientific Research (CNRS-L). Financial support by the “Ligue contre le Cancer, Conseil Interrégional Grand Ouest” is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bassam Badran.

Ethics declarations

Conflict of interest

Rania El Majzoub, Mohammad Fayyad-kazan, Assaad Nasr El Dine, Rawan Makki, Eva Hamade, René Grée, Ali Hachem, Rabih Talhouk, Hussein Fayyad-Kazan and Bassam Badran declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the 1964 Helsinki declaration and its later amendments.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Majzoub, R., Fayyad-kazan, M., Nasr El Dine, A. et al. A thiosemicarbazone derivative induces triple negative breast cancer cell apoptosis: possible role of miRNA-125a-5p and miRNA-181a-5p. Genes Genom 41, 1431–1443 (2019). https://doi.org/10.1007/s13258-019-00866-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-019-00866-y

Keywords

Navigation