Skip to main content
Log in

Molt-dependent transcriptome analysis of claw muscles in Chinese mitten crab Eriocheir sinensis

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Background

Molting is a critical developmental process for crustaceans, during which the claw muscles undergo periodic atrophy and restoration. But the mechanism underlying this special muscle reshuffle around ecdysis is not yet thoroughly understood.

Objective

To investigate the molecular mechanism underlying the muscle’s reshuffle over the molting cycle of Chinese mitten crab Eriocheir sinensis.

Methods

The Illumina high-throughput sequencing technique were used to sequence the transcriptome of the whole claw muscles from Chinese mitten crab Eriocheir sinensis in three molting stages (inter-molt C stage, pre-molt D3−4 and post-molt A–B stage); the de novo assembly, annotation and functional evaluation of the contigs were performed with bioinformatics tools.

Results

Totally 129,149 unigenes, 128,190 CDS, 33,770 SSRs and a large number of SNP sites were obtained, and 3700 and 12,771 differentially expressed genes (DEGs) were identified respectively in A–B and D3−4 stage compared with that in C stage. The identified DEGs were enriched to 746 and 1 408 GO terms respectively in A–B and D3–4 stage compared with C stage (p ≤ 0.05). KEGG pathway analysis showed that the DEGs were significantly enriched in 14 and 11 pathways in A–B vs C comparison and D3−4 vs C comparison (p ≤ 0.05), respectively. These DEGs are involved in several biological processes critical for the animal’s growth and development, such as gene expression, protein synthesis, muscle development, new cuticle reconstruction, oxidation–reduction process and glycolytic process.

Conclusion

The data generated in this study is the first transcriptomic resource from the muscles of Chinese mitten crab, which would facilitate to characterize key molecular processes underlying crab muscle’s growth and development during the molting cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Audic S, Claverie JM (1997) The significance of digital gene expression profiles. Genome Res 7:986–995

    Article  CAS  PubMed  Google Scholar 

  • Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188

    Article  Google Scholar 

  • Colbourne JK, Pfrender ME, Gilbert D, Thomas WK, Tucker A, Oakley TH, Tokishita S, Aerts A, Arnold GJ, Basu MK et al (2011) The ecoresponsive genome of Daphnia pulex. Science 331:555–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das S, Pitts NL, Mudron MR, Durica DS, Mykles DL (2016) Transcriptome analysis of the molting gland (Y-organ) from the blackback land crab, Gecarcinus lateralis. Comp Biochem Physiol Part D Genom Proteom 17:26–40

    CAS  Google Scholar 

  • de Hoon MJ, Imoto S, Nolan J, Miyano S (2004) Open source clustering software. Bioinformatics 20:1453–1454

    Article  CAS  PubMed  Google Scholar 

  • Devaraj H, Natarajan A (2006) Molecular mechanisms regulating molting in a crustacean. FEBS J 273:839–846

    Article  CAS  PubMed  Google Scholar 

  • Dittel AI, Epifanio CE (2009) Invasion biology of the Chinese mitten crab Eriochier sinensis: A brief review. J Exp Mar Bio Ecol 374:79–92

    Article  Google Scholar 

  • El Haj AJ (1999) Regulation of muscle growth and sarcomeric protein gene expression over the intermolt cycle. Am Zool 39:570–579

    Article  Google Scholar 

  • El Haj A, Clarke S, Harrison P, Chang E (1996) In vivo muscle protein synthesis rates in the American lobster Homarus americanus during the moult cycle and in response to 20-hydroxyecdysone. J Exp Biol 199:579–585

    CAS  PubMed  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutekunst J, Andriantsoa R, Falckenhayn C, Hanna K, Stein W, Rasamy J, Lyko F (2018) Clonal genome evolution and rapid invasive spread of the marbled crayfish. Nat Ecol Evol 2:567–573

    Article  PubMed  Google Scholar 

  • Haas AL, Baboshina O, Williams B, Schwartz LM (1995) Coordinated induction of the ubiquitin conjugation pathway accompanies the developmentally programmed death of insect skeletal muscle. J Biol Chem 270:9407–9412

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Wang J, Yue W, Chen J, Gaughan S, Lu W, Lu G, Wang C (2015) Transcriptomic variation of hepatopancreas reveals the energy metabolism and biological processes associated with molting in Chinese mitten crab, Eriocheir sinensis. Sci Rep 5:14015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang W, Ren C, Li H, Huo D, Wang Y, Jiang X, Tian Y, Luo P, Chen T, Hu C (2017) Transcriptomic analyses on muscle tissues of Litopenaeus vannamei provide the first profile insight into the response to low temperature stress. PLoS One 12:e0178604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ismail SZM, Mykles DL (1992) Differential molt-induced atrophy in the dimorphic claws of male fiddler crabs. J Exp Zool 263:18–31

    Article  Google Scholar 

  • Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T et al (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36:D480–D484

    Article  CAS  PubMed  Google Scholar 

  • Kao D, Lai AG, Stamataki E, Rosic S, Konstantinides N, Jarvis E, Di Donfrancesco A, Pouchkina-Stancheva N, Semon M, Grillo M et al (2016) The genome of the crustacean Parhyale hawaiensis, a model for animal development, regeneration, immunity and lignocellulose digestion. Elife 5:e20062. https://doi.org/10.7554/eLife.20062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kenny NJ, Sin YW, Shen X, Zhe Q, Wang W, Chan TF, Tobe SS, Shimeld SM, Chu KH, Hui JH (2014) Genomic sequence and experimental tractability of a new decapod shrimp model, Neocaridina denticulata. Mar Drugs 12:1419–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koenders A, Yu X, Chang ES, Mykles DL (2002) Ubiquitin and actin expression in claw muscles of land crab, Gecarcinus lateralis, and American lobster, Homarus americanus: differential expression of ubiquitin in two slow muscle fiber types during molt-induced atrophy. J Exp Zool 292:618–632

    Article  CAS  PubMed  Google Scholar 

  • Kuballa AV, Holton TA, Paterson B, Elizur A (2011) Moult cycle specific differential gene expression profiling of the crab Portunus pelagicus. BMC Genom 12:147

    Article  CAS  Google Scholar 

  • Lee JH, Suryaningtyas IT, Yoon TH, Shim JM, Park H, Kim HW (2017) Transcriptomic analysis of the hepatopancreas induced by eyestalk ablation in shrimp, Litopenaeus vannamei. Comp Biochem Physiol Part D Genom Proteom 24:99–110

    CAS  Google Scholar 

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li R, Li Y, Fang X, Yang H, Wang J, Kristiansen K, Wang J (2009) SNP detection for massively parallel whole-genome resequencing. Genome Res 19:1124–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Fu Y, Zhu F, Mu C, Li R, Song W, Shi C, Ye Y, Wang C (2018) Transcriptomic analysis of Portunus trituberculatus reveals a critical role for WNT4 and WNT signalling in limb regeneration. Gene 658:113–122

    Article  CAS  PubMed  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-SEq. Nat Methods 5:621–628

    Article  CAS  PubMed  Google Scholar 

  • Mykles DL (1997) Crustacean muscle plasticity: molecular mechanisms determining mass and contractile properties. Comp Biochem Physiol B Biochem Mol Biol 117:367–378

    Article  CAS  PubMed  Google Scholar 

  • Mykles DL (1998) Intracellular proteinases of invertebrates: calcium-dependent and proteasome/ubiquitin-dependent systems. Int Rev Cytol 184:157–289

    Article  CAS  PubMed  Google Scholar 

  • Mykles DL (1999) Proteolytic processes underlying molt-Induced claw muscle atrophy in decapod crustaceans. Am Zool 39:541–551

    Article  CAS  Google Scholar 

  • Mykles DL, Skinner DM (1981) Preferential loss of thin filaments during molt-induced atrophy in crab claw muscle. J Ultrastruct Res 75:314–325

    Article  CAS  PubMed  Google Scholar 

  • Mykles DL, Skinner DM (1990) Athophy of crustacean somatic muscle and the proteinases that do the job. A review. J Crust Biol 10:577

    Article  Google Scholar 

  • Nakatsuji T, Keino H, Tamura K, Yoshimura S, Kawakami T, Aimoto S, Sonobe H (2000) Changes in the Amounts of the Molt-Inhibiting Hormone in Sinus Glands during the Molt Cycle of the American Crayfish, Procambarus clarkii. Zool Sci 17:1129–1136

    Article  CAS  Google Scholar 

  • Pickart CM, Summers RG, Shim H, Kasperek EM (2010) Dynamics of ubiquitin pools in developing sea urchin embryos. Dev Growth Differ 33:587–598

    Article  Google Scholar 

  • Promwikorn W, Boonyoung P, Kirirat P (2005) Histological characterization of cuticular depositions throughout the molting cycle of the black tiger shrimp (Penaeus monodon). Songklanakarin J Sci Technol 27:499–509

    Google Scholar 

  • Qin Z, Babu VS, Wan Q, Zhou M, Liang R, Muhammad A, Zhao L, Li J, Lan J, Lin L (2018) Transcriptome analysis of Pacific white shrimp (Litopenaeus vannamei) challenged by Vibrio parahaemolyticus reveals unique immune-related genes. Fish Shellfish Immunol 77:164–174

    Article  CAS  PubMed  Google Scholar 

  • Saldanha AJ (2004) Java Treeview—extensible visualization of microarray data. Bioinformatics 20:3246–3248

    Article  CAS  PubMed  Google Scholar 

  • Schmiege DL, Ridgwa RL, Moffett SB (1992) Ultrastructure of autotomy-induced atrophy of muscles in the crab Carcinus maenas. Can J Zool 72:841–851

    Article  Google Scholar 

  • Shean BS, Mykles DL (1995) Polyubiquitin in crustacean striated muscle: increased expression and conjugation during molt-induced claw muscle atrophy. Biochim Biophys Acta 1264:312–322

    Article  PubMed  Google Scholar 

  • Shyamal S, Das S, Guruacharya A, Mykles DL, Durica DS (2018) Transcriptomic analysis of crustacean molting gland (Y-organ) regulation via the mTOR signaling pathway. Sci Rep 8:7307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song L, Bian C, Luo Y, Wang L, You X, Li J, Qiu Y, Ma X, Zhu Z, Ma L et al (2016) Draft genome of the Chinese mitten crab, Eriocheir sinensis. GigaScience 5:5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spees JL, Chang SA, Mykles DL, Snyder MJ, Chang ES (2003) Molt cycle-dependent molecular chaperone and polyubiquitin gene expression in lobster. Cell Stress Chaperones 8:258–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian Z, Kang X, Mu S (2012) The molt stages and the hepatopancreas contents of lipids, glycogen and selected inorganic elements during the molt cycle of the Chinese mitten crab, eriocheir sinensis. Fish Sci 78:67–74

    Article  CAS  Google Scholar 

  • Wang C, Li C, Li S (2008) Mitochondrial DNA-inferred population structure and demographic history of the mitten crab (Eriocheir sensu stricto) found along the coast of mainland China. Mol Ecol 17:3515–3527

    PubMed  Google Scholar 

  • West JM (1997) Ultrastructural and contractile activation properties of crustacean muscle fibres over the moult cycle. Comp Biochem Physiol 117B:333–345

    Article  CAS  Google Scholar 

  • West JM, Humphris DC, Stephenson DG (1995) Characterization of ultrastructural and contractile activation properties of crustacean (Cherax destructor) muscle fibres during claw regeneration and moulting. J Muscle Res Cell Motil 16:267–284

    Article  CAS  PubMed  Google Scholar 

  • Whiteley NM, El Haj AJ (1997) Regulation of muscle gene expression over the moult in crustacea. Comp Biochem Phys B 117:323–331

    Article  Google Scholar 

  • Wing SS, Goldberg AL (1993) Glucocorticoids activate the ATP-ubiquitin-dependent proteolytic system in skeletal muscle during fasting. Am J Physiol 264:E668–E676

    CAS  PubMed  Google Scholar 

  • Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11:R14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu X, Mykles DL (2003) Cloning of a muscle-specific calpain from the American lobster Homarus americanus: expression associated with muscle atrophy and restoration during moulting. J Exp Biol 206:561–575

    Article  CAS  PubMed  Google Scholar 

  • Yuan J, Gao Y, Zhang X, Wei J, Liu C, Li F, Xiang J (2017) Genome sequences of marine shrimp exopalaemon carinicauda Holthuis provide insights into genome size evolution of Caridea. Mar Drugs 15(7):213. https://doi.org/10.3390/md15070213

    Article  CAS  PubMed Central  Google Scholar 

  • Yuan J, Zhang X, Liu C, Yua Y, Wei J, Lia F, Xiang J (2018) Genomic resources and comparative analyses of two economical penaeid shrimp species, Marsupenaeus japonicus and Penaeus monodon. Mar Genom 39:22–25

    Article  Google Scholar 

  • Zhang C, Pang Y, Zhang Q, Huang G, Xu M, Tang B, Cheng Y, Yang X (2018) Hemolymph transcriptome analysis of Chinese mitten crab (Eriocheir sinensis) with intact, left cheliped autotomy and bilateral eyestalk ablation. Fish Shellfish Immunol 81:266–275

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (31572635), the Key Supporting Subject of Ecology of Shaoguan University (230079030101) and the Key Scientific Research Project of Shaoguan University. We would like to thank prof. Yongxu Cheng for his kindly arrangement for the animal sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanzhen Jiao.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Z., Jiao, C. Molt-dependent transcriptome analysis of claw muscles in Chinese mitten crab Eriocheir sinensis. Genes Genom 41, 515–528 (2019). https://doi.org/10.1007/s13258-019-00787-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-019-00787-w

Keywords

Navigation